3.如圖,AB切⊙O于點(diǎn)B,直線AO交⊙O于D,E兩點(diǎn),BC⊥DE,垂足為C,∠CBD=30°.
(1)證明:∠DBA=30°;
(2)若BC=$\sqrt{2}$,求AE.

分析 (1)DE是⊙O的直徑,則∠BED+∠EDB=90°,又BC⊥DE,可得∠CBD=∠BED=30°,由于AB切⊙O于點(diǎn)B,可得∠DBA=∠BED,即可得出.
(2)由(1)知BD平分∠CBA,則$\frac{BA}{BC}=\frac{AD}{CD}$.由BC⊥DE,可得∠A=30°,再利用切割線定理得AB2=AD•AE,即可得出.

解答 (1)證明:∵DE是⊙O的直徑,則∠BED+∠EDB=90°,
∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED=30°,
∵AB切⊙O于點(diǎn)B,∴∠DBA=∠BED,即∠CBD=∠DBA=30°.
(2)解:由(1)知BD平分∠CBA,則$\frac{BA}{BC}=\frac{AD}{CD}$,
由BC⊥DE,∠CBD=∠DBA=30°,知∠A=30°,
∴$AB=2BC=2\sqrt{2},AC=\sqrt{3}BC=\sqrt{6}$,
又$\frac{AD}{DC}=\frac{BA}{BC}=\frac{{2\sqrt{2}}}{{\sqrt{2}}}=2$,∴$AD=\frac{2}{3}AC=\frac{{2\sqrt{6}}}{3}$.
由切割線定理得AB2=AD•AE,
∴$AE=\frac{{A{B^2}}}{AD}=2\sqrt{6}$.

點(diǎn)評(píng) 本題考查了圓的性質(zhì)、弦切角定理、切割線定理、角平分線的性質(zhì)、直角三角形的邊角關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+alnx.
(Ⅰ)當(dāng)a=-2e時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若函數(shù)f(x)在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.集合A={x|log2x≤2},B={x|$\frac{1}{4}$≤2x≤4},則A∩B=(  )
A.{x|-2≤x≤2}B.{x|-2≤x≤4}C.{x|0<x≤2}D.{x|2≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.兩等差數(shù)列{an}、{bn}的前n項(xiàng)和的比$\frac{S_n}{T_n}$=$\frac{7n+1}{4n+2}$,則$\frac{{{a_{11}}}}{{{b_{11}}}}$的值是( 。
A.$\frac{43}{74}$B.$\frac{74}{43}$C.$\frac{39}{23}$D.$\frac{23}{39}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知圓(x-a)2+y2=4截直線y=x-4所得的弦的長(zhǎng)度為2$\sqrt{2}$,則a等于( 。
A.2B.6C.2或6D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)△ABC是銳角三角形,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別記為a,b,c,并且(sinB-sinC)(sinB+sinC)=sin(${\frac{π}{3}$-C)sin(${\frac{π}{3}$+C).
(1)求角B的值;
(2)若$\overrightarrow{BC}$•$\overrightarrow{BA}$=12,b=2$\sqrt{7}$,求a,b(其中c<a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算:
(1)在等比數(shù)列中,已知a1=2,S3=26,求q與a3;
(2)已知雙曲線為-9x2+y2=81,求該雙曲線的焦點(diǎn)坐標(biāo)和離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E為PD的中點(diǎn).
(Ⅰ)求證:平面PAC⊥平面PDC;
(Ⅱ)求直線EC與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖是x和y的一組樣本數(shù)據(jù)的散點(diǎn)圖,去掉一組數(shù)據(jù)D(3,10)后,剩下的4組數(shù)據(jù)的相關(guān)指數(shù)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案