已知變數(shù)x,y滿足約束條件
x-3y+4≥0
x+2y-1≥0
3x+y-8≤0
,目標(biāo)函數(shù)z=x+ay(a≥0)僅在點(diǎn)(2,2)處取得最大值,則a的取值范圍為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),確定目標(biāo)取最優(yōu)解的條件,即可求出a的取值范圍.
解答: 解:作出不等式對(duì)應(yīng)的平面區(qū)域,
當(dāng)a=0時(shí),z=x,即x=z,此時(shí)不成立.
由z=x+ay得y=-
1
a
x+
z
a
,
要使目標(biāo)函數(shù)z=x+ay(a≥0)僅在點(diǎn)(2,2)處取得最大值,
則陰影部分區(qū)域在直線y=-
1
a
x+
z
a
的下方,
即目標(biāo)函數(shù)的斜率k=-
1
a
,滿足k>kAC,
即-
1
a
>-3,
∵a>0,
∴a>
1
3

即a的取值范圍為(
1
3
,+∞)
,
故答案為:(
1
3
,+∞)
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.根據(jù)條件目標(biāo)函數(shù)z=x+y僅在點(diǎn)P(2,2)處取得最大值,確定直線的位置是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=5
3
sinxcosx+6cos2x+sin2x+
3
2

(Ⅰ)當(dāng)x∈[
π
6
,
π
2
]時(shí),求函數(shù)f(x)的值域;
(Ⅱ)在銳角△ABC中,sinC=
3
5
,f(A)=
15
2
,AB=2
3
,求AB邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是拋物線y=1-x2上在y軸兩側(cè)的點(diǎn),求過(guò)點(diǎn)A、B的切線與x軸圍成面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知 A>B,且tanA、tanB是方程6x2-5x+1=0的兩個(gè)根.
(1)求tanA、tanB、tan(A+B)的值;
(2)若AB=
5
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A={x|-3≤x≤4},B={x|2m-1≤x≤2m+1},A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)命題,其中所有正確命題的序號(hào)為:
 

(1)“b2=ac”是“實(shí)數(shù)a、b、c成等比例”的充要條件;
(2)已知線性回歸方程
y
=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值
y
平均增加4個(gè)單位;
(3)函數(shù)f(x)=ex-(
1
2
x在區(qū)間(-1,1)上只有1個(gè)零點(diǎn);
(4)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2=0”;
(5)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),則c等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),xf′(x)<f(-x)成立(其中f′(x)是f(x)的導(dǎo)函數(shù)).若a=
3
f(
3
),b=f(1),c=(log2
1
4
)f(log2
1
4
),則a、b、c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2x+3y+4z=10,則x2+y2+z2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)過(guò)點(diǎn)(1,3),則函數(shù)y=f(x+1)過(guò)點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案