【題目】如圖,在四棱錐中,平面,的中點.

1)求證:平面;

2)求三棱錐的體積.

【答案】1)證明見解析;(2

【解析】

(1)取的中點,先證明四邊形是平行四邊形,可得,只需證平面即可,而由已知易證平面,從而可證得,而由等腰三角形的性質(zhì)可證得,由此可證得平面;

2)先在中利用勾股定理求出的長,再在中,求出,從而可得的長,而的中點,所以,在中,再利用勾股定理求出,而由(1)可知平面,所以,代值可得答案.

1)證明:如下圖,取的中點,連接,.

的中點,則的中位線.

所以.

,

所以.

所以四邊形是平行四邊形.

所以.

因為,的中點,

所以.

因為,

所以.

因為平面,所以.

,所以平面.

所以.

,所以平面.

,所以平面.

2)因為,

所以由勾股定理得,,.

所以.

所以.

由(1)得,平面,所以.

所以.

由(1)得,平面,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某飼料廠原有陳糧10噸,又購進新糧x噸,現(xiàn)將糧食總庫存量的一半精加工為飼料.若被精加工的新糧最多可用噸,被精加工的陳糧最多可用y2噸,記,則函數(shù)的圖象為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,軸上方的點在拋物線上,且,直線與拋物線交于,兩點(點,不重合),設(shè)直線,的斜率分別為,.

(Ⅰ)求拋物線的方程;

(Ⅱ)當時,求證:直線恒過定點并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)

1的極小值點;

2)函數(shù)有且只有1個零點;

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則

上述說法正確的序號為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小區(qū)抽取50戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.

(1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;

(2)若將用電量在區(qū)間內(nèi)的用戶記為類用戶,標記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類用戶,標記為高用電家庭,現(xiàn)對這兩類用戶進行問卷調(diào)查,讓其對供電服務(wù)進行打分,打分情況見莖葉圖:

①從類用戶中任意抽取3戶,求恰好有2戶打分超過85分的概率;

②若打分超過85分視為滿意,沒超過85分視為不滿意,請?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為“滿意度與用電量高低有關(guān)”?

滿意

不滿意

合計

類用戶

類用戶

合計

附表及公式:

<>0.050

0.010

0.001

3.841

6.635

10.828

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)一個袋子里有紅、黃、藍色小球各一個現(xiàn)每次從袋子里取出一個球(取出某色球的概率均相同),確定顏色后放回,直到連續(xù)兩次均取出紅色球時為止,記此時取出球的次數(shù)為ξ,則ξ的數(shù)學期望為_____ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的幾何體中,四邊形為長方形,平面平面,且上一點,且.

1)求證:平面;

2)若,,求此多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為直角梯形,ABCD,ABADPA⊥平面ABCD,E是棱PC上一點.

1)證明:平面ADE⊥平面PAB.

2)若PE4EC,O為點E在平面PAB上的投影,ABAP2CD2,求四棱錐PADEO的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的離心率為,左、右焦點分別為,點在橢圓上,的周長為

1)求橢圓的方程;

2)已知直線l經(jīng)過點,且與橢圓交于不同的兩點,若為坐標原點)成等比數(shù)列,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案