分析 (1)取PD中點(diǎn)F,連結(jié)EF,CF,證明:四邊形CBEF為平行四邊形,可得BE∥CF,即可證明EB∥平面PCD;
(2)若PC=CD,證明CF⊥平面PAD,由(1)知BE∥CF,即可證明:BE⊥平面PDA.
解答 證明:(1)取PD中點(diǎn)F,連結(jié)EF,CF.
因?yàn)镋為PA中點(diǎn),F(xiàn)為PD中點(diǎn),
所以EF∥AD且AD=2EF,
又因?yàn)锽C⊥CD,AD⊥CD,
所以CB∥AD,
又由AD=2CB
所以EF∥CB,CB=EF,
所以四邊形CBEF為平行四邊形
所以BE∥CF,
又因?yàn)镃F?平面PCD,BE?平面PCD
所以BE∥平面PCD;
(2)F為PD中點(diǎn),PC=CD,
所以CF⊥PD,
因?yàn)镻C⊥底面CBAD,
所以PC⊥AD,
又AD⊥CD,PC∩CD=C,
所以AD⊥平面PCD,
又CF?平面PCD,
所以AD⊥CF,
又PD∩AD=D,
所以CF⊥平面PAD,
由(1)知BE∥CF,
所以BE⊥平面PAD.
點(diǎn)評(píng) 本題考查線面平行、垂直的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{15}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{16}$ | D. | $\frac{π}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com