17.?dāng)?shù)列{an}滿足(an+1-1)(1-an)=an,a8=2,則S2017=$\frac{2017}{2}$.

分析 (an+1-1)(1-an)=an,a8=2,∴(2-1)(1-a7)=a7,解得a7=$\frac{1}{2}$,同理可得a6=-1,a5=2,…,a1=$\frac{1}{2}$.可得an+3=an.S2017=a1+672(a6+a7+a8).

解答 解:∵(an+1-1)(1-an)=an,a8=2,
∴(2-1)(1-a7)=a7,解得a7=$\frac{1}{2}$,
同理可得a6=-1,a5=2,…,a1=$\frac{1}{2}$.∴an+3=an
則S2017=a1+672(a6+a7+a8)=$\frac{1}{2}$+672×$\frac{3}{2}$=$\frac{2017}{2}$.
故答案為:$\frac{2017}{2}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、數(shù)列的周期性、數(shù)列求和,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)A(1,0),B(3,0),若直線y=kx+1上存在點(diǎn)P,滿足PA⊥PB,則k的取值范圍是$[-\frac{4}{3},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圖中,能表示函數(shù)y=f(x)的圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\frac{{-{2^x}+n}}{{{2^{x+1}}+m}}$是定義在R上的奇函數(shù).
(1)求n,m的值;
(2)若對任意的c∈(-1,1),不等式f(4c-2c+1)+f(2•4c-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.寫出與下列各角終邊相同的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來:
(1)60°;
(2)-21°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,四棱錐P-ABCD的底面為一直角梯形,BC⊥CD,CD⊥AD,AD=2BC,PC⊥底面ABCD,E為PA的中點(diǎn).
(1)證明:EB∥平面PCD; 
(2)若PC=CD,證明:BE⊥平面PDA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對任意實(shí)數(shù)a,b,c,d,定義符號$(\begin{array}{l}{a}&\\{c}&edkxadg\end{array})$=$\left\{\begin{array}{l}{\sqrt{ad-bc}(ad≥bc)}\\{\frac{1}{2}\sqrt{bc-ad}(ad<bc)}\end{array}\right.$,已知函數(shù)f(x)=$(\begin{array}{l}{x}&{4}\\{1}&{x}\end{array})$,直線l:kx-y+3-2k=0,若直線l與函數(shù)f(x)的圖象有兩個公共點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-1,$\frac{2}{3}$)∪($\frac{3}{4}$,1)B.(-1,$\frac{17}{24}$)C.(-1,$\frac{17}{24}$)∪($\frac{3}{4}$,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知關(guān)于x的方程${({\frac{1}{2}})^x}-{x^{\frac{1}{3}}}=0$,那么在下列區(qū)間中含有方程的根的是( 。
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

同步練習(xí)冊答案