4.某四棱錐的三視圖如圖所示,則該四棱錐外接球的表面積是( 。
A.$\frac{17}{2}$πB.34πC.$\frac{17\sqrt{34}}{3}$πD.17$\sqrt{34}$π

分析 由三視圖知該幾何體是一個(gè)四棱錐,并畫出對應(yīng)的長方體,由三視圖求出幾何元素的長度,由長方體求出外接球的半徑,由球體的表面積公式求出該四棱錐外接球的表面積.

解答 解根據(jù)三視圖可知幾何體是一個(gè)四棱錐P-ABCD,如圖:
且四棱錐P-ABCD是長方體的一部分,AP=4、AB=AD=3,
∴該四棱錐和正方體的外接球相同,設(shè)外接球的半徑是R,
則2R=$\sqrt{{4}^{2}+{3}^{2}+{3}^{2}}$=$\sqrt{34}$,R=$\frac{\sqrt{34}}{2}$,
∴該四棱錐外接球的表面積S=4πR2=34π,
故選:B.

點(diǎn)評 本題考查三視圖求幾何體外接球的表面積,由三視圖正確復(fù)原幾何體以及幾何體補(bǔ)形是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某三棱錐的正視圖,側(cè)視圖,俯視圖如圖所示,則該三棱錐的表面積是$4+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x∈R+時(shí),可得到不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{x^2}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{x^2}$≥3,由此可推廣為x+$\frac{P}{x^n}$≥n+1,其中P等于( 。
A.nnB.(n-1)nC.nn-1D.xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中錯(cuò)誤的是( 。
A.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實(shí)數(shù)y有等式f(cosy)=cos2y成立
B.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實(shí)數(shù)y有等式f(siny)=sin2y成立
C.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實(shí)數(shù)y有等式f(cosy)=cos3y成立
D.存在定義在[-1,1]上的函數(shù)f(x)使得對任意實(shí)數(shù)y有等式f(siny)=sin3y成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}
(1)求∁R(A∪B);
(2)若A∪C=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.平面直角坐標(biāo)系xOy中,已知圓x2+y2-2y=0,圓心F為拋物線y=$\frac{1}{2p}$x2的焦點(diǎn),直線l經(jīng)過點(diǎn)F與拋物線交于A,B兩點(diǎn),|AB|=5.
(I)求AB中點(diǎn)的縱坐標(biāo);
(Ⅱ)將圓F沿y軸向下平移一個(gè)單位得到圓N,過拋物線上一點(diǎn)M(2$\sqrt{2}$,m)作圓N的切線,切點(diǎn)分別為C,D,求直線CD的方程和△OCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等軸雙曲線C的一個(gè)焦點(diǎn)坐標(biāo)是($\sqrt{2}$,0),直線y=kx+b與雙曲線C恰有1個(gè)交點(diǎn),以|k|,|b|,1為邊長的三角形的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知α、β∈(0,π),且cosα=$\frac{{\sqrt{10}}}{10}$,cosβ=$\frac{{\sqrt{5}}}{5}$,那么α+β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=xsinx+cosx的導(dǎo)數(shù)是( 。
A.y′=2sinx+xcosxB.y′=xcosxC.y′=xcosx-sinxD.y′=sinx+xcosx

查看答案和解析>>

同步練習(xí)冊答案