16.在平面直角坐標(biāo)系中,方程3x-2y+1=0所對(duì)應(yīng)的直線經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=2y\end{array}\right.$后的直線方程為(  )
A.3x'-4y'+1=0B.3x'+y'-1=0C.9x'-y'+1=0D.x'-4y'+1=0

分析 由伸縮變換$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=2y\end{array}\right.$可得:x,y,代入直線3x-2y+1=0即可得出.

解答 解:由伸縮變換$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=2y\end{array}\right.$可得:$\left\{\begin{array}{l}{x=3x′}\\{y=\frac{1}{2}y′}\end{array}\right.$,
代入直線3x-2y+1=0可得:9x′-2×$\frac{1}{2}$y′+1=0,即9x'-y'+1=0.
故選:C.

點(diǎn)評(píng) 本題考查了坐標(biāo)變換,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知函數(shù)f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$(其中e為自然對(duì)數(shù)的底數(shù)),h(x)=x-$\frac{1}{x}$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,.已知直線y=$\frac{x}{e}$是曲線y=f(x)的切線,且函數(shù)g(x)在(0,+∞)上是增函數(shù).
(i)求實(shí)數(shù)a的值;
(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:如果a>b>0,c>d>0,那么ac>bd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列四個(gè)結(jié)論中假命題的序號(hào)是①④.
①垂直于同一直線的兩條直線互相平行;
②平行于同一直線的兩直線平行;
③若直線a,b,c滿足a∥b,b⊥c,則a⊥c;
④若直線a,b是異面直線,則與a,b都相交的兩條直線是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知扇形的周長(zhǎng)是5cm,面積是$\frac{3}{2}$cm2,則扇形的中心角的弧度數(shù)是( 。
A.3B.$\frac{4}{3}$C.$3或\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓過點(diǎn)A(-3,0),且離心率$e=\frac{{\sqrt{5}}}{3}$,則橢圓的標(biāo)準(zhǔn)方程是( 。
A.$\frac{x^2}{9}+\frac{{4{y^2}}}{81}=1$B.$\frac{x^2}{4}+\frac{y^2}{9}=1$C.$\frac{{4{x^2}}}{81}+\frac{y^2}{9}=1$D.$\frac{x^2}{9}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a∈(0,+∞),不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,可推廣為x+$\frac{a}{{x}^{n}}$≥n+1,則a的值為( 。
A.2nB.n2C.22(n-1)D.nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.馬路上9盞路燈,為了節(jié)約用電可以關(guān)掉3盞路燈,但兩端2盞不能關(guān)掉,也不能同時(shí)關(guān)掉相鄰的2盞或3盞,這樣的關(guān)燈方法有(  )
A.56種B.36種C.20種D.10種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+$\frac{2a}{x+1}$,a∈R.
(Ⅰ)若函數(shù)f(x)在(0,+∞)上為單調(diào)增函數(shù),求a的取值范圍;
(Ⅱ)設(shè)m>n>0,求證:lnm-lnn>$\frac{2(m-n)}{m+n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案