分析 利用誘導(dǎo)公式,二倍角公式化簡所求結(jié)合已知即可計算得解.
解答 解:∵$sin(x+\frac{π}{6})=\frac{1}{3}$,
∴$sin(\frac{5π}{6}-x)-{sin^2}(\frac{π}{3}-x)$=sin(x+$\frac{π}{6}$)-$\frac{1-cos[2(\frac{π}{3}-x)]}{2}$=sin(x+$\frac{π}{6}$)-$\frac{1-2co{s}^{2}(\frac{π}{3}-x)+1}{2}$=sin(x+$\frac{π}{6}$)-1+sin2(x+$\frac{π}{6}$)=$\frac{1}{3}-1+$($\frac{1}{3}$)2=$-\frac{5}{9}$.
答案:$-\frac{5}{9}$.
點評 本題主要考查了誘導(dǎo)公式,二倍角公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5或-3 | B. | 2或6 | C. | 5或3 | D. | $\sqrt{5}$或$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}+\frac{1}$有最大值4 | B. | $\sqrt{ab}$有最小值 $\frac{1}{2}$ | C. | $\sqrt{a}+\sqrt$有最大值$\sqrt{2}$ | D. | a2+b2有最小值$\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com