分析 利用遞推關(guān)系可得:a1=$\frac{2}{λ+1}$(λ≠-1),$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{-λ}{λ+1}$.再利用單調(diào)性即可得出.
解答 解:∵(2λ+1)Sn=λan+2,∴n≥2時(shí),(2λ+1)Sn-1=λan-1+2,相減可得:
n=1時(shí),(2λ+1)a1=λa1+2,解得a1=$\frac{2}{λ+1}$(λ≠-1).
$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{-λ}{λ+1}$.
①若a1=$\frac{2}{λ+1}$>0,則$\frac{-λ}{λ+1}$>1,解得$-1<λ<\frac{1}{2}$.
②若a1=$\frac{2}{λ+1}$<0,則0<$\frac{-λ}{λ+1}$<1,解得λ∈∅.
綜上可得:λ∈$(-1,\frac{1}{2})$.
故答案為:$(-1,\frac{1}{2})$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、數(shù)列的單調(diào)性、分類(lèi)討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=-f({x+\frac{π}{2}})$ | B. | $f(x)=f({-x+\frac{π}{2}})$ | C. | $f(x)•f({x+\frac{π}{2}})=1$ | D. | $f(x)=-f({-x+\frac{π}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | -$\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -3 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com