15.已知圓C過拋物線y2=4x的焦點(diǎn),且圓心在此拋物線的準(zhǔn)線上,若圓C的圓心不在x軸上,且與直線x+$\sqrt{3}$y-3=0相切,則圓C的半徑為14.

分析 求出拋物線的準(zhǔn)線方程x=-1,設(shè)圓心坐標(biāo)(-1,h),根據(jù)切線的性質(zhì)列方程解出h,從而可求得圓的半徑.

解答 解:拋物線y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線方程為x=-1,
設(shè)圓C的圓心為C(-1,h),則圓C的半徑r=$\sqrt{{h}^{2}+4}$,
∵直線x+$\sqrt{3}$y-3=0與圓C相切,
∴圓心C到直線的距離d=r,即$\frac{|\sqrt{3}h-4|}{2}$=$\sqrt{{h}^{2}+4}$,
解得h=0(舍)或h=-8$\sqrt{3}$.
∴r=$\sqrt{192+4}$=14.
故答案為:14.

點(diǎn)評(píng) 本題考查了拋物線的性質(zhì),直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|-1≤x≤2},B={y|y=x2,x∈A},則A∩B=(  )
A.[-1,0]B.[0,2]C.[2,4]D.[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.四面體A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,則四面體A-BCD外接球的表面積為(  )
A.50πB.100πC.200πD.300π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.遞增數(shù)列{an}的前n項(xiàng)和為Sn,若(2λ+1)Sn=λan+2,則實(shí)數(shù)λ的取值范圍是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)據(jù)x,y的取值如表:
x12345
y13.2m14.215.416.4
從散點(diǎn)圖可知,y與x呈線性相關(guān)關(guān)系,已知第四組數(shù)據(jù)在回歸直線$\hat y=0.8x+\hat a$上,則m的取值為13.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點(diǎn),且與線段CD(包括端點(diǎn)C、D)有兩個(gè)交點(diǎn),則該雙曲線的離心率的取值范圍是[$\sqrt{3}$+1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知z=x2+y2,其中實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}-x+y≤1\\ x+2y≥2\\ x-2≤0\end{array}\right.$,則z的最小值是( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{7}{9}$C.$\frac{4}{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{{\sqrt{3}c-a}}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(1,2),若向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(1,-2)垂直,則實(shí)數(shù)λ=-$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案