12.圓(x+1)2+y2=2的圓心到直線y=2x+3的距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\sqrt{2}$D.$2\sqrt{2}$

分析 先求出圓(x+1)2+y2=2的圓心,再利用點到直線y=2x+3的距離公式求解.

解答 解:∵圓(x+1)2+y2=2的圓心為(-1,0),
∴圓(x+1)2+y2=2的圓心到直線y=2x+3的距離為:
d=$\frac{|-2+3|}{\sqrt{5}}=\frac{\sqrt{5}}{5}$.
故選:A.

點評 本題考查圓心到直線的距離的求法,注意點到直線的距離公式和圓的性質(zhì)的合理運用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x<1}\\{4(x+a)(x+2a),x≥1}\end{array}\right.$,若f(x)恰有2個零點,則實數(shù)a的取值范圍是(-∞,-2]∪(-1,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.遞增數(shù)列{an}的前n項和為Sn,若(2λ+1)Sn=λan+2,則實數(shù)λ的取值范圍是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點,且與線段CD(包括端點C、D)有兩個交點,則該雙曲線的離心率的取值范圍是[$\sqrt{3}$+1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知z=x2+y2,其中實數(shù)x,y滿足$\left\{\begin{array}{l}-x+y≤1\\ x+2y≥2\\ x-2≤0\end{array}\right.$,則z的最小值是( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{7}{9}$C.$\frac{4}{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知由小到大排列的一組數(shù)據(jù)7,8,a,12,13的平均數(shù)為10,則方差為$\frac{26}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{{\sqrt{3}c-a}}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知在平面直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cosα}\\{y=4+5sinα}\end{array}\right.$,(α為參數(shù)),A,B在曲線C上,以原點O為極點,x軸的正半軸為極軸建立極坐標系,A,B兩點的極坐標分別為A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{π}{2}$)
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)設(shè)曲線C的中心為M,求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知f(x)=ax3-xlnx,若?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立,則實數(shù)a的取值范圍是$[\frac{e}{6},+∞)$.

查看答案和解析>>

同步練習冊答案