18.我們把各位數(shù)字之和等于6的三位數(shù)稱為“吉祥數(shù)”,例如123就是一個“吉祥數(shù)”,則這樣的“吉祥數(shù)”一共有( 。
A.28個B.21個C.35個D.56個

分析 根據(jù)1+1+4=6,1+2+3=6,2+2+2=6,0+1+5=6,0+2+4=6,0+3+3=6,0+0+6=6,所以可以分為7類,分別求出每一類的三位數(shù),再根據(jù)分類計數(shù)原理得到答案.

解答 解:因為1+1+4=6,1+2+3=6,2+2+2=6,0+1+5=6,0+2+4=6,0+3+3=6,0+0+6=6,
所以可以分為7類,
當(dāng)三個位數(shù)字為1,1,4時,三位數(shù)有3個,
當(dāng)三個位數(shù)字為1,2,3時,三位數(shù)有A33=6個,
當(dāng)三個位數(shù)字為2,2,2時,三位數(shù)有1個,
當(dāng)三個位數(shù)字為0,1,5時,三位數(shù)有A21A22=4個,
當(dāng)三個位數(shù)字為0,2,4時,三位數(shù)有A21A22=4個,
當(dāng)三個位數(shù)字為0,3,3時,三位數(shù)有2個,
當(dāng)三個位數(shù)字為0,0,6時,三位數(shù)有1個,
根據(jù)分類計數(shù)原理得三位數(shù)共有3+6+1+4+4+2+1=21.
故選B.

點評 本題主要考查了分類計數(shù)原理,關(guān)鍵是找到三個數(shù)字之和為6的數(shù)分別是什么,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點數(shù)記為x;小李后擲一枚骰子,向上的點數(shù)記為y.
(1)求x+y能被3整除的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)(x∈R)滿足f(-x)=8-f(4+x),函數(shù)g(x)=$\frac{4x+3}{x-2}$,若函數(shù)f(x)與g(x)的圖象共有168個交點,記作Pi(xi,yi)(i=1,2,…,168),則(x1+y1)+(x2+y2)+…+(x168+y168)的值為( 。
A.2018B.2017C.2016D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(Ⅰ)求平行于直線x-2y+1=0,且與它的距離為2$\sqrt{5}$的直線方程;
(Ⅱ)求經(jīng)過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:2x+3y+1=0垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,Sn=2an-2
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,cn=$\frac{1}{_{n}_{n+1}}$,記數(shù)列{cn}的前n項和為Tn,求 Tn;
(Ⅲ)設(shè)dn=nan,記數(shù)列{dn}的前n項和為Gn,求Gn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校開展“讀好書,好讀書”活動,要求本學(xué)期每人至少讀一本課外書,該校高一共有100名學(xué)生,他們本學(xué)期讀課外書的本數(shù)統(tǒng)計如圖所示.
( I)求高一學(xué)生讀課外書的人均本數(shù);
(Ⅱ)從高一學(xué)生中任意選兩名學(xué)生,求他們讀課外書的本數(shù)恰好相等的概率;
(Ⅲ)從高一學(xué)生中任選兩名學(xué)生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,求隨機(jī)變量ζ的分布列及數(shù)學(xué)期望Eζ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$滿足3|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,<$\overrightarrow{m}$,$\overrightarrow{n}$>=60°,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$)則實數(shù)t的值為(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線 ${C_2}:ρ{sin^2}θ=4cosθ$.以極點為坐標(biāo)原點,極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)C與C1,C2交于不同四點,這四點在C上的排列順次為P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2+b2<c2,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

同步練習(xí)冊答案