12.已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z=1+3i$(i為虛數(shù)單位),則復(fù)數(shù)$\frac{z}{1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 $\overline z=1+3i$(i為虛數(shù)單位),可得z=1-3i.再利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:∵$\overline z=1+3i$(i為虛數(shù)單位),∴z=1-3i.
則復(fù)數(shù)$\frac{z}{1+i}$=$\frac{1-3i}{1+i}$=$\frac{(1-3i)(1-i)}{(1+i)(1-i)}$=$\frac{-2-4i}{2}$=-1-2i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(-1,-2)位于第三象限.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川省高二上學(xué)期期中考數(shù)學(xué)試卷(解析版) 題型:解答題

直線與坐標(biāo)軸的交點(diǎn)是圓一條直徑的兩端點(diǎn).

(I)求圓的方程;

(II)圓的弦長(zhǎng)度為且過(guò)點(diǎn),求弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如下圖所示的程序框圖,輸出S的值為( 。
A.1007B.1008C.1009D.1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.奧運(yùn)會(huì)乒乓球比賽共設(shè)男子單打、女子單打、男子團(tuán)體、女子團(tuán)體共四枚金牌,保守估計(jì)中國(guó)乒乓球男隊(duì)單打或團(tuán)體獲得一枚金牌的概率均為$\frac{3}{4}$,中國(guó)乒乓球女隊(duì)單打或團(tuán)體獲得一枚金牌的概率均為$\frac{4}{5}$.
(1)求按此估計(jì)中國(guó)乒乓球女隊(duì)比中國(guó)乒乓球男隊(duì)多獲得一枚金牌的概率;
(2)記中國(guó)乒乓球隊(duì)獲得的金牌數(shù)為ξ,按此估計(jì)ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1千多年.在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱(chēng)為塹堵,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉臑指四個(gè)面均為直角三角形的四面體.如圖,在塹堵ABC-A1B1C1中,AC⊥BC.
(Ⅰ)求證:四棱錐B-A1ACC1為陽(yáng)馬;并判斷四面體B-A1CC1是否為鱉臑,若是,請(qǐng)寫(xiě)出各個(gè)面的直角(只要求寫(xiě)出結(jié)論).
(Ⅱ)若A1A=AB=2,當(dāng)陽(yáng)馬B-A1ACC1體積最大時(shí),求二面角C-A1B-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知O是坐標(biāo)原點(diǎn),雙曲線${x^2}-\frac{y^2}{n^2}=1({n>0})$的兩條漸近線分別為l1,l2,右焦點(diǎn)為F,以O(shè)F為直徑的圓交l1于異于原點(diǎn)O的點(diǎn)A,若點(diǎn)B在l2上,且$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,則雙曲線的方程為(  )
A.${x^2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{5}=1$D.${x^2}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.二項(xiàng)式(x+y)5的展開(kāi)式中,含x2y3的項(xiàng)的系數(shù)是a,若m,n滿(mǎn)足$\left\{{\begin{array}{l}{10m-10n≥a}\\{m+n≤4}\\{n≥0}\end{array}}\right.$,則u=m-2n的取值范圍是[-$\frac{1}{2}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知某圓的極坐標(biāo)方程為ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,求:
(1)圓的標(biāo)準(zhǔn)方程和參數(shù)方程;
(2)在圓上所有的點(diǎn)(x,y)中x•y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知焦點(diǎn)為F的拋物線y2=2px(p>0)上有一點(diǎn)$A({m,2\sqrt{2}})$,以A為圓心,|AF|為半徑的圓被y軸截得的弦長(zhǎng)為$2\sqrt{7}$,則m=( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案