5.已知ab>0,若a>b,則$\frac{1}{a}$<$\frac{1}$的否命題是( 。
A.已知ab≤0,若a≤b,則$\frac{1}{a}$≥$\frac{1}$B.已知ab≤0,若a>b,則$\frac{1}{a}$≥$\frac{1}$
C.已知ab>0,若a≤b,則$\frac{1}{a}$≥$\frac{1}$D.已知ab>0,若a>b,則$\frac{1}{a}$≥$\frac{1}$

分析 根據(jù)否命題的定義進(jìn)行判斷即可.

解答 解:同時(shí)否定條件和結(jié)論得命題的否命題為:
已知ab>0,若a≤b,則$\frac{1}{a}$≥$\frac{1}$,
故選:C

點(diǎn)評(píng) 本題主要考查四種命題的判斷,根據(jù)否命題的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知z=($\frac{1+i}{1-i}$)1902+($\frac{1-i}{1+i}$)2017,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$的虛部是( 。
A.1B.-iC.-1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,則平移后圖象的對(duì)稱軸為(  )
A.$x=kπ+\frac{π}{6}(k∈Z)$B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.$x=kπ+\frac{5π}{24}(k∈Z)$D.$x=\frac{kπ}{2}+\frac{5π}{24}(k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知正方形ABCD的邊長(zhǎng)是a,依次連接正方形ABCD的各邊中點(diǎn)得到一個(gè)新的正方形,再依次連接新正方形的各邊中點(diǎn)又得到一個(gè)新的正方形,按此規(guī)律,依次得到一系列的正方形,如圖所示,現(xiàn)有一只小蟲從A點(diǎn)出發(fā),沿正方形的邊逆時(shí)針?lè)较蚺佬校坑龅叫抡叫蔚捻旤c(diǎn)時(shí),沿這個(gè)新正方形的邊逆時(shí)針?lè)较蚺佬校绱讼氯,爬行?0條線段,則這10條線段的長(zhǎng)度的和是( 。
A.$\frac{31}{128}(2+\sqrt{2})a$B.$\frac{31}{64}(2+\sqrt{2})a$C.$(1+\frac{{\sqrt{2}}}{32})a$D.$(1-\frac{{\sqrt{2}}}{32})a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某學(xué)校開設(shè)校本選修課,其中人文類4門A1,A2,A3,A4,自然類3門B1,B2,B3,其中A1與B1上課時(shí)間一致,其余均不沖突.一位同學(xué)共選3門,若要求每類課程中至少選一門,則該同學(xué)共有25種選課方式.(用數(shù)字填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)集合A={2},B={x|ax-1=0,a∈R},若A∩B=B,則a=0或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(Ⅰ)求證:$kC_n^k=nC_{n-1}^{k-1}$;
(Ⅱ)在數(shù)學(xué)上,常用符號(hào)來(lái)表示算式,如記$\sum_{i=0}^n{a_i}={a_0}+{a_1}+{a_2}+…+{a_n}$,其中i∈N,n∈N*
①若a0,a1,a2,…,an成等差數(shù)列,且a0=0,求證:$\sum_{i=0}^n{({a_i}•C_n^i})={a_n}•{2^{n-1}}$;
②若$\sum_{k=1}^{2n}{{{(1+x)}^k}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2n}}{x^{2n}}$,${b_n}=\sum_{i=0}^n{{a_{2i}}}$,記${d_n}=1+\sum_{i=1}^n{[{{(-1)}^i}}•{b_i}•C_n^i]$,且不等式t•(dn-1)≤bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,梯形ABCD中,|$\overrightarrow{AD}$|=|$\overrightarrow{BC}$|,$\overrightarrow{EF}$∥$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則相等向量是(  )
A.$\overrightarrow{AD}$與$\overrightarrow{BC}$B.$\overrightarrow{OA}$與$\overrightarrow{OB}$C.$\overrightarrow{AC}$與$\overrightarrow{BD}$D.$\overrightarrow{EO}$與$\overrightarrow{OF}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.有下列命題:
①?gòu)?fù)數(shù)z滿足|z-1|+|z+1|=2則復(fù)數(shù)z所對(duì)應(yīng)點(diǎn)Z的軌跡是一個(gè)橢圓;
②f′(x0)=$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0})}}{h}=\lim_{x→{x_0}}\frac{{f(x)-f({x_0})}}{{x-{x_0}}}$=$\lim_{h→0}\frac{{f({x_0})-f({x_0}-h)}}{h}$;
③將5封信投入3個(gè)郵筒,不同的投法共有53種;
④已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是$\frac{1}{3}$,那么另一組數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)和方差分別是4和3;
⑤若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值為9
其中正確的有:②④⑤.

查看答案和解析>>

同步練習(xí)冊(cè)答案