4.拋物線y=x2上一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的縱坐標(biāo)為$\frac{3}{4}$.

分析 由題意可知:焦點(diǎn)坐標(biāo)為(0,$\frac{1}{4}$),準(zhǔn)線方程為:y=-$\frac{1}{4}$,由拋物線的定義可知:丨MF丨=丨MD丨=1,即y+$\frac{1}{4}$=1,解得:y=$\frac{3}{4}$,即可求得M的縱坐標(biāo).

解答 解:拋物線y=x2焦點(diǎn)在y軸上,焦點(diǎn)坐標(biāo)為(0,$\frac{1}{4}$),準(zhǔn)線方程為:y=-$\frac{1}{4}$,
設(shè)M(x,y),過M做準(zhǔn)線的垂直,垂足為D,
由拋物線的定義可知:丨MF丨=丨MD丨=1,
即y+$\frac{1}{4}$=1,解得:y=$\frac{3}{4}$,
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的定義,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若a>b,則下列不等式中正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.a2>b2C.a+b≥2$\sqrt{ab}$D.a2+b2>2ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x).若在區(qū)間(a,b)上,f″(x)<0恒成立,則稱函數(shù)f(x)在(a,b)上為“凸函數(shù)”.已知f(x)=$\frac{1}{6}$x3-$\frac{1}{2}$mx2+x在(-1,2)上是“凸函數(shù)”,則f(x)在(-1,2)上( 。
A.既有極大值,又有極小值B.有極小值,無極大值
C.有極大值,無極小值D.既無極大值,也無極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)常數(shù)a>0,若${(x+\frac{a}{x})^9}$的二項(xiàng)展開式中x5的系數(shù)為144,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的長軸長為$2\sqrt{6}$,左焦點(diǎn)的坐標(biāo)為(-2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點(diǎn),并與C交于A、B兩點(diǎn),且$|AB|=\sqrt{6}$,試求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知A,B分別是函數(shù)f(x)=2sinωx(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn),且∠AOB=$\frac{π}{2}$,則該函數(shù)的最小正周期是$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\frac{\overline z}{1-i}=2+i$,則復(fù)數(shù)z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2|x+2|-|x+1|,無窮數(shù)列{an}的首項(xiàng)a1=a.
(1)如果an=f(n)(n∈N*),寫出數(shù)列{an}的通項(xiàng)公式;
(2)如果an=f(an-1)(n∈N*且n≥2),要使得數(shù)列{an}是等差數(shù)列,求首項(xiàng)a的取值范圍;
(3)如果an=f(an-1)(n∈N*且n≥2),求出數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在正四棱錐P-ABCD中,PA=AB=a,E是棱PC的中點(diǎn).
(1)求證:PC⊥BD;
(2)求直線BE與PA所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案