【題目】已知函數(shù) .
(1)若是 的一個極值點,求 值及的單調(diào)區(qū)間;
(2)當(dāng) 時,求在區(qū)間上的最值.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)
【解析】試題分析:(1)對函數(shù)求導(dǎo),由極值點知其對應(yīng)導(dǎo)數(shù)值為,可得關(guān)于的方程,求出值,進一步得出的單調(diào)區(qū)間; 當(dāng)代入,得函數(shù)并求導(dǎo),得出其單調(diào)性,利用單調(diào)性可求出其最值.
試題解析:函數(shù)的定義域為.
(1)由題,
所以由是函數(shù)的一個極值點得,解得,
此時.
所以,當(dāng)時, ;當(dāng)時, ,
即函數(shù)在單調(diào)遞增;在單調(diào)遞減.
所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)因為,所以, .
所以,當(dāng)或時, ;當(dāng)時, .
所以函數(shù)的單調(diào)遞增區(qū)間為和;單調(diào)遞減區(qū)間為,
又,所以在遞減,在遞增,
所以的最小值,
又, 及,
所以的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為函數(shù)圖象上一點, 為坐標(biāo)原點,記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 上頂點為,右頂點為,離心率, 為坐標(biāo)原點,圓: 與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線: ()與橢圓相交于兩不同點,若橢圓上一點滿足,求面積的最大值及此時的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某智能手機制作完成之后還需要依次通過三道嚴(yán)格的審核程序,已知第一道審核、第二道審核、第三道審核通過的概率分別為 ,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.
(1)求審核過程中只進行兩道程序就停止審核的概率;
(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)判斷函數(shù)零點的個數(shù),并說明理由;
(Ⅱ)記,討論的單調(diào)性;
(Ⅲ)若在恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的:從道物理題中隨機抽取道;從道化學(xué)題中隨機抽取道;從道生物題中隨機抽取道.使用合適的方法確定這個學(xué)生所要回答的三門學(xué)科的題的序號(物理題的編號為,化學(xué)題的編號為,生物題的編號為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D1中,E為AB的中點,F為AA1的中點.求證:CE,D1F,DA三線交于一點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com