精英家教網 > 高中數學 > 題目詳情
12.函數$y=sin(-\frac{x}{2}-\frac{π}{6})$的單調遞增區(qū)間是( 。
A.[2kπ+$\frac{2}{3}$π,2kπ+$\frac{8}{3}$π](k∈Z)B.[4kπ+$\frac{2}{3}$π,4kπ+$\frac{8}{3}$π](k∈Z)
C.[2kπ-$\frac{4}{3}$π,2kπ+$\frac{2}{3}$π](k∈Z)D.[4kπ-$\frac{4}{3}$π,4kπ+$\frac{2}{3}$π](k∈Z)

分析 求三角函數的單調區(qū)間,一般要將自變量的系數變?yōu)檎龜,再由三角函數的單調性得出自變量所滿足的不等式,求解即可得出所要的單調遞增區(qū)間.

解答 解:$y=sin(-\frac{x}{2}-\frac{π}{6})$=-sin($\frac{x}{2}$+$\frac{π}{6}$),
令2kπ+$\frac{π}{2}$<$\frac{x}{2}$+$\frac{π}{6}$<2kπ+$\frac{3π}{2}$,k∈Z,解得4kπ+$\frac{2}{3}$π<x<4kπ+$\frac{8}{3}$π,k∈Z
函數的遞增區(qū)間是[4kπ+$\frac{2}{3}$π,4kπ+$\frac{8}{3}$π](k∈Z)
故選B.

點評 本題考查正弦函數的單調性,求解本題的關鍵有二,一是將自變量的系數為為正,二是根據正弦函數的單調性得出相位滿足的取值范圍,解題時不要忘記引入的參數的取值范圍即k∈Z.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.函數y=loga(2-ax)在[0,1]上為減函數,則實數a的取值范圍是( 。
A.1<a<2B.$\frac{1}{2}$<a<1C.$\frac{1}{2}$<a<2D.a=$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.若點A(x1,y1)、B(x2,y2)同時滿足一下兩個條件:
(1)點A、B都在函數y=f(x)上;
(2)點A、B關于原點對稱;
則稱點對((x1,y1),(x2,y2))是函數f(x)的一個“姐妹點對”.
已知函數$f(x)=\left\{\begin{array}{l}x-4\;\;\;\;({x≥0})\\{x^2}-2x\;\;({x<0})\;\end{array}\right.$,則函數f(x)的“姐妹點對”是(1,-3),(-1,3).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.曲線C1的參數方程為$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.(α$為參數),M是曲線C1上的動點,且M是線段OP的中點,P點的軌跡為曲線C2,直線l的極坐標方程為$ρsin({x+\frac{π}{4}})=\sqrt{2}$,直線l與曲線C2交于A,B兩點.
(1)求曲線C2的普通方程;
(2)求線段 AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.設不等式x2+ax+b≤0的解集為A=[m,n],不等式$\frac{{({x+2})({x+1})}}{x-1}>0$的解集為B,若A∪B=(-2,+∞),A∩B=(1,3],則m+n=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.下列說法錯誤的是(  )
A.棱臺的各側棱延長后相交于一點
B.如果不在同一平面內的兩個相似的直角三角形的對應邊互相平行,則連接它們的對應頂點所圍成的多面體是三棱臺
C.圓臺上底圓周上任一點與下底圓周上任一點的連線都是圓臺的母線
D.用平行于圓錐底面的平面去截圓錐,底面與截面之間的部分叫做圓臺

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若點(5,b)在兩條平行直線$3x-4y+\frac{1}{2}=0$與6x+8y+10=0之間,則整數b的值為( 。
A.5B.-5C.4D.-4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.拋物線y2=4x與直線y=-2x+4所圍成的面積為$\frac{86}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.直線kx-y-1=0與圓x2+y2-2y=0有公共點,則實數k的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{3}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

同步練習冊答案