【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.
(1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
科目:高中數(shù)學 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)()的最小正周
期為,
(Ⅰ)求的值;
(Ⅱ)將函數(shù)的圖像上各點的橫坐標縮短到原來的,縱坐標不變,得到函數(shù)
的圖像,求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機遇, 決定開發(fā)生產(chǎn)一款大型電子設備, 生產(chǎn)這種設備的年固定成本為萬元, 每生產(chǎn)臺,需另投入成本(萬元), 當年產(chǎn)量不足臺時, (萬元); 當年產(chǎn)量不小于臺時 (萬元), 若每臺設備售價為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設備能全部售完.
(1)求年利潤 (萬元)關(guān)于年產(chǎn)量(臺)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺時 ,該企業(yè)在這一電子設備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,離心率,且橢圓經(jīng)過點,過橢圓的左焦點且不與坐標軸垂直的直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)設線段的垂直平分線與軸交于點,求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓的中心為原點,長軸在軸上,上頂點為,左、右焦點分別為,線段的中點分別為,且是面積為的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過作直線交橢圓于兩點,使,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:直線與圓有兩個交點;命題: .
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題, 為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點,為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為常數(shù),函數(shù).
(1)當時,求函數(shù)的最小值;
(2)若有兩個極值點,():
①求實數(shù)的取值范圍;
②求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com