15.已知函數(shù)f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x),x∈R,則f(x)是( 。
A.最小正周期為π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的奇函數(shù)D.最小正周期為2π的偶函數(shù)

分析 利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x)=-2sin2x,利用正弦函數(shù)的性質即可得解.

解答 解:∵f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x)
=$\frac{\sqrt{3}}{2}$cos2x-$\frac{1}{2}$sin2x-$\sqrt{3}$($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)
=-2sin2x,
∴可得:T=$\frac{2π}{2}$=π,利用正弦函數(shù)的性質可得f(x)為最小正周期為π奇函數(shù).
故選:C.

點評 本題主要考查了三角函數(shù)恒等變換的應用,正弦函數(shù)的圖象和性質的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,則輸出的S值為( 。
A.1B.3C.7D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin($ωx+ϕ),(ω>0,A>0,ϕ∈(0,\frac{π}{2}))$部分圖象如圖所示.
(I)求函數(shù)f(x)的解析式; 
(II)已知$a∈(0,\frac{π}{2})$,且cosa=$\frac{2}{3}$,求f(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知$\vec a$與$\vec b$的夾角為$\frac{2π}{3}$,且$|\vec a|=2$,$|\vec b|=5$,則$(2\vec a-\vec b)•\vec a$=13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某經銷商試銷A、B兩種商品一個月(30天)的記錄如下:
日銷售量(件)012345
商品A的頻數(shù)357753
商品B的頻數(shù)446853
若售出每種商品1件均獲利40元,用X,Y表示售出A、B商品的日利潤值(單位:元).將頻率視為概率.
(1)設兩種商品的銷售量互不影響,求兩種商品日獲利值均超過100元的概率;
(2)由于某種原因,該商家決定只選擇經銷A、B商品的一種,你認為應選擇哪種商品,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知雙曲線C1:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線為x+2y=0,且點(2,$\sqrt{2}$)在雙曲線C1上.
(1)求雙曲線C1的標準方程;
(2)設拋物線C2:x2=2py(p>0)的焦點F是雙曲線C1的一個頂點,過點P(0,t)(t>0)任意作一條直線交拋物線于兩點A,B,直線AF,BF與拋物線的另一交點分別為M,N.若直線MN的斜率為k1,直線AB的斜率為k2.問:是否存在實數(shù)t,使得k1=2k2恒成立?若存在,求t的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知定義在R上的奇函數(shù)f(x)滿足f(x+3)=f(x),且當x∈[0,$\frac{3}{2}$)時,f(x)=一x3.則f($\frac{11}{2}$)=(  )
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{125}{8}$D.$\frac{125}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在某校,一學科的學習由必修、選修兩門課程組成,對某層次學生調查統(tǒng)計知,有且僅有一門課程獲得學分概率為$\frac{5}{12}$,至少一門課程獲得學分的概率為$\frac{11}{12}$.規(guī)定兩門課程都獲得學分該學科才能結業(yè).已知必修課程獲得學分的概率大于選修課程獲得學分的概率且互不影響.
(1)對該層內的A同學,該學科能結業(yè)的概率是多少?
(2)在該層次的同學中隨機抽取5名,記X為其中能結業(yè)的學生數(shù),求X的期望EX與方差DX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設f(x)=ex,f(x)=g(x)-h(x),且g(x)為偶函數(shù),h(x)為奇函數(shù),若存在實數(shù)m,當x∈[-1,1]時,不等式mg(x)+h(x)≥0成立,則m的最小值為( 。
A.$\frac{{e}^{2}-1}{{e}^{2}+1}$B.$\frac{2}{{e}^{2}+1}$C.$\frac{{e}^{2}+1}{{e}^{2}-1}$D.$\frac{1-{e}^{2}}{1+{e}^{2}}$

查看答案和解析>>

同步練習冊答案