3.曲線y=xlnx上點(diǎn)P處的切線平行于直線2x-y+1=0,則點(diǎn)P的坐標(biāo)是( 。
A.(1,e)B.(e,e)C.(e,1)D.(1,1)

分析 設(shè)曲線y=xlnx上點(diǎn)P的坐標(biāo)為(a,b),依題意,可求得線y=xlnx上點(diǎn)P(a,b)處的切線l的斜率k=lna+1=2,從而可得點(diǎn)P的坐標(biāo).

解答 解:設(shè)曲線y=xlnx上點(diǎn)P的坐標(biāo)為(a,b),
∵y′=lnx+1,
依題意,曲線y=xlnx上點(diǎn)P(a,b)處的切線l的斜率k=lna+1=2,
∴a=e.
∴b=elne=e,
∴點(diǎn)P的坐標(biāo)是(e,e).
故選:B.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求曲線某點(diǎn)的切線方程,求得曲線y=xlnx上點(diǎn)P(a,b)處的切線l的斜率lna+1=2是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3=1,則S5=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y>m2+3m-2恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m<-2或m>5B.-5<m<2C.-2<m<5D.m<-5或m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列各組中的兩個(gè)向量共線的是(  )
A.$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(2,6)B.$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(4,8)C.$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,1)D.$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(6,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx-$\frac{1}{2}$a(x-1)(a∈R)).
(1)若a=-4,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若x∈(1,+∞),函數(shù)f(x)的圖象始終在x軸的下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.一簡(jiǎn)單組合體的三視圖及尺寸如圖所示(單位:cm),該組合體的體積為44cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.“x>0”是“x2>0”的充分不必要條件.(填“充分必要條件”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是奇函數(shù).
(1)求實(shí)數(shù)a和b的值;
(2)證明y=f(x)在區(qū)間(1,+∞)上的單調(diào)遞減;
(3)已知k<0且不等式f(t2-2t+3)+f(k-1)<0對(duì)任意的t∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.一家面包根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求該面包房日銷售量的平均值,中位數(shù);
(2)用X表示在未來(lái)3天里銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X)

查看答案和解析>>

同步練習(xí)冊(cè)答案