4.已知sin2α=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),sin(β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sinα和cosα的值;
(2)求tan(α+2β)的值.
分析 (1)由已知求出cos2α,再由降冪公式求得sinα和cosα的值;
(2)由已知利用配角思想求出sin2β、cos2β的值,得到tan2β,再由(1)求出tanα,代入兩角和的正切得答案.
解答 解:(1)∵α∈(0,$\frac{π}{4}$),∴2α∈(0,$\frac{π}{2}$),
又sin2α=$\frac{4}{5}$,∴cos2α=$\sqrt{1-si{n}^{2}2α}=\sqrt{1-(\frac{4}{5})^{2}}=\frac{3}{5}$,
由cos2α=1-2sin2α,得
$sinα=\sqrt{\frac{1-cos2α}{2}}=\sqrt{\frac{1-\frac{3}{5}}{2}}=\frac{\sqrt{5}}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}=\sqrt{1-(\frac{\sqrt{5}}{5})^{2}}=\frac{2\sqrt{5}}{5}$;
(2)由β∈($\frac{π}{4}$,$\frac{π}{2}$),得$β-\frac{π}{4}$∈(0,$\frac{π}{4}$),
又sin(β-$\frac{π}{4}$)=$\frac{3}{5}$,∴cos(β-$\frac{π}{4}$)=$\frac{4}{5}$,
∴sinβ=sin[($β-\frac{π}{4}$)+$\frac{π}{4}$]=sin($β-\frac{π}{4}$)cos$\frac{π}{4}$+cos($β-\frac{π}{4}$)sin$\frac{π}{4}$
=($\frac{3}{5}+\frac{4}{5}$)×$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.
則cosβ=$\sqrt{1-si{n}^{2}β}=\sqrt{1-(\frac{7\sqrt{2}}{10})^{2}}=\frac{\sqrt{2}}{10}$.
∴sin2β=2sinβcosβ=2×$\frac{7\sqrt{2}}{10}×\frac{\sqrt{2}}{10}$=$\frac{7}{25}$.
則cos2β=$-\frac{24}{25}$,
∴tan2$β=-\frac{7}{24}$.
由(1)知,tan$α=\frac{1}{2}$,
∴tan(α+2β)=$\frac{tanα+tan2β}{1-tanαtan2β}$=$\frac{\frac{1}{2}-\frac{7}{24}}{1+\frac{1}{2}×\frac{7}{24}}$=$\frac{2}{11}$.
點評 本題考查兩角和與差的三角函數(shù),考查倍角公式、同角三角函數(shù)的基本關(guān)系式等的應用,屬中檔題.