分析 求出底面三角形的面積,利用三棱錐的體積求出O到底面的距離,求出底面三角形的所在平面圓的半徑,通過勾股定理求出球的半徑,即可求解球的體積.
解答 解:三棱錐O-ABC,A、B、C三點(diǎn)均在球心O的表面上,且AB=BC=1,
∠ABC=120°,AC=$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$×1×1×sin120°=$\frac{\sqrt{3}}{4}$,
∵三棱錐O-ABC的體積為$\frac{\sqrt{5}}{4}$,
△ABC的外接圓的圓心為G,
∴OG⊥⊙G,
外接圓的半徑為:GA=$\frac{\sqrt{3}}{2sin120°}$=1,
∴$\frac{1}{3}$S△ABC•OG=$\frac{\sqrt{5}}{4}$,即$\frac{1}{3}×\frac{\sqrt{3}}{4}$OG=$\frac{\sqrt{5}}{4}$,
∴OG=$\sqrt{15}$,
球的半徑為:$\sqrt{1+15}$=4.
球的體積:$\frac{4}{3}$π•43=$\frac{256}{3}$π.
故答案為:$\frac{256}{3}$π.
點(diǎn)評(píng) 本題考查球的體積的求法,球的內(nèi)含體與三棱錐的關(guān)系,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>0,使2x≤3x | B. | ?x>0,使2x≤3x | C. | ?x≤0,使2x≤3x | D. | ?x≤0,使2x≤3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 90° | D. | 135° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com