分析 (1)由漸近線方程可得關(guān)于a、b的一個(gè)方程,再把點(diǎn)M($\sqrt{5}$,$\sqrt{3}$)代入雙曲線的方程又得到關(guān)于a、b的一個(gè)方程,將以上方程聯(lián)立即可解得a、b的值;
(2)利用$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0得x1x2+y1y2=0、一元二次方程的根與系數(shù)的關(guān)系、弦長(zhǎng)公式即可求出.
解答 解:(1)雙曲線C的漸近線方程為y=±$\sqrt{3}$x,∴b=$\sqrt{3}$a,雙曲線的方程可設(shè)為3x2-y2=3a2.
∵點(diǎn)M($\sqrt{5}$,$\sqrt{3}$)在雙曲線上,可解得a=2,∴雙曲線C的方程為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1.
(2)設(shè)直線PQ的方程為y=kx+m,點(diǎn)P(x1,y1),Q(x2,y2),
將直線PQ的方程代入雙曲線C的方程,可化為(3-k2)x2-2kmx-m2-12=0
∴$\left\{\begin{array}{l}{3-{k}^{2}≠0}\\{△>0}\end{array}\right.$(*)
x1+x2=$\frac{2km}{3-{k}^{2}}$,x1x2=$\frac{-{m}^{2}-12}{3-{k}^{2}}$,
由$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0得x1x2+y1y2=0,
把y1=kx1+m,y2=kx2+m代入上式可得(1+k2)x1x2+km(x1+x2)+m2=0,
∴(1+k2)•$\frac{-{m}^{2}-12}{3-{k}^{2}}$+km•$\frac{2km}{3-{k}^{2}}$+m2=0,
化簡(jiǎn)得m2=6k2+6.
|OP|2+|OQ|2=|PQ|2=24+$\frac{384{k}^{2}}{({k}^{2}-3)^{2}}$
當(dāng)k=0時(shí),|PQ|2=24+$\frac{384{k}^{2}}{({k}^{2}-3)^{2}}$≥24成立,且滿足(*)
又∵當(dāng)直線PQ垂直x軸時(shí),|PQ|2>24,
∴|OP|2+|OQ|2的最小值是24.
點(diǎn)評(píng) 熟練掌握待定系數(shù)法求圓錐曲線的方程、$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0得x1x2+y1y2=0、一元二次方程的根與系數(shù)的關(guān)系、弦長(zhǎng)公式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 內(nèi)切 | B. | 外切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com