7.函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2},x∈R$,當(dāng)$0≤θ≤\frac{π}{2}$時,f(msinθ)+f(1-m)>0恒成立,則實數(shù)m的取值范圍是(-∞,1].

分析 根據(jù)條件判斷函數(shù)的奇偶性和單調(diào)性,利用函數(shù)的奇偶性和單調(diào)性將不等式進(jìn)行轉(zhuǎn)化,利用參數(shù)分離法進(jìn)行求解即可.

解答 解:∵$f(x)=\frac{{{e^x}-{e^{-x}}}}{2},x∈R$,
∴f(-x)=$\frac{{e}^{-x}-{e}^{x}}{2}$=-$\frac{{e}^{x}-{e}^{-x}}{2}$=-f(x),
則函數(shù)f(x)為奇函數(shù),
且函數(shù)f(x)在(-∞,+∞)是為增函數(shù),
由f(msinθ)+f(1-m)>0,
得f(msinθ)>-f(1-m)=f(m-1),
則msinθ>m-1,
即(1-sinθ)m<1,
當(dāng)θ=$\frac{π}{2}$時,sinθ=1,此時不等式等價為0<1成立,
當(dāng)θ∈(0,$\frac{π}{2}$),0<sinθ<1,
∴m<$\frac{1}{1-sinθ}$,
∵0<sinθ<1,∴-1<-sinθ<0,
0<1-sinθ<1,則$\frac{1}{1-sinθ}$>1,
則m≤1,
故答案為:(-∞,1].

點評 本題主要考查不等式恒成立問題,利用參數(shù)分離法結(jié)合函數(shù)奇偶性和單調(diào)性的性質(zhì)是解決本題的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知兩條不同直線a,b及平面α,則下列命題中真命題是(  )
A.若a∥α,b∥α,則a∥bB.若a∥b,b∥α,則a∥αC.若a⊥α,b⊥α,則a∥bD.若a⊥α,b⊥a,則b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將函數(shù)y=cosx的圖象向右移$\frac{π}{3}$個單位,可以得到y(tǒng)=sin(x+$\frac{π}{6}$)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項和${S_n}=\frac{{{3^{n+1}}-3}}{2}$,數(shù)列{bn}滿足${b_n}=\frac{1}{{(n+1){{log}_3}{a_n}}}$,數(shù)列{cn}滿足cn=(2n+1)an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Bn
(3)求數(shù)列{cn}的前n項和Cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知A為△ABC的內(nèi)角,向量$\overrightarrow m=(\sqrt{3},-1),\overrightarrow n=(cosA,sinA)$,若$\overrightarrow m⊥\overrightarrow n$,則角A=( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知隨機(jī)變量ξ服從二項分布$ξ~B({6,\frac{1}{3}})$,即P(ξ=2)等于( 。
A.$\frac{3}{16}$B.$\frac{1}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等差數(shù)列{an}的首項為1,公差為2,則數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“a>b”是“a>b+1”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=2,an+1=3an+2.
(Ⅰ)證明:{an+1}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)設(shè)Sn=$\frac{3}{{{a_1}{a_2}}}+\frac{3^2}{{{a_2}{a_3}}}+…+\frac{3^n}{{{a_n}{a_{n+1}}}}$,求Sn

查看答案和解析>>

同步練習(xí)冊答案