分析 根據(jù)函數(shù)圖象平移變換法則,可判斷①;判斷x∈(0,1)時(shí),x$-\frac{1}{x}$的范圍,可判斷②;根據(jù)充要條件的定義,可判斷③;根據(jù)正弦型函數(shù)的對稱性和奇偶性,可判斷④.
解答 解:①函數(shù)$f(x)=\frac{2x-1}{x+1}$=$\frac{-3}{x+1}$+2,其圖象由反比例函數(shù)y=$\frac{-3}{x}$的圖象向左平移兩單位,再向上平移2個(gè)單位得到,故圖象的對稱中心是(-1,2),故①正確;
②x∈(0,1)時(shí),x$-\frac{1}{x}$∈(-∞,0),若關(guān)于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$沒有實(shí)數(shù)根,則k的取值范圍是k≥0,故②錯(cuò)誤;
③在△ABC中,“bcosA=acosB”?“sinBcosA=sinAcosB”?“sin(A-B)=0”?“A=B”⇒“△ABC為等腰三角形”,“bcosA=acosB”是“△ABC為等邊三角形”的必要不充分條件,故③錯(cuò)誤;
④若$f(x)=sin({2x-\frac{π}{3}})$的圖象向右平移φ(φ>0)個(gè)單位后為奇函數(shù),-2φ-$\frac{π}{3}$=kπ,k∈Z,
當(dāng)k=-1時(shí),φ最小值是$\frac{π}{3}$,故④錯(cuò)誤;
故答案為:①
點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的對稱性,方程的根,函數(shù)的值域,充要條件,正弦型函數(shù)的圖象和性質(zhì),難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相切 | B. | 相交 | C. | 相離 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{6}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{3}{2}$,2] | B. | ($\frac{3}{2}$,2) | C. | [$\frac{3}{2}$,2) | D. | [$\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 35 | B. | 70 | C. | 210 | D. | 105 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com