12.給出以下四個(gè)結(jié)論:
①函數(shù)$f(x)=\frac{2x-1}{x+1}$的對稱中心是(-1,2);
②若關(guān)于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$沒有實(shí)數(shù)根,則k的取值范圍是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的充分不必要條件;
④若$f(x)=sin({2x-\frac{π}{3}})$的圖象向右平移φ(φ>0)個(gè)單位后為奇函數(shù),則φ最小值是$\frac{π}{12}$.
其中正確的結(jié)論是①.

分析 根據(jù)函數(shù)圖象平移變換法則,可判斷①;判斷x∈(0,1)時(shí),x$-\frac{1}{x}$的范圍,可判斷②;根據(jù)充要條件的定義,可判斷③;根據(jù)正弦型函數(shù)的對稱性和奇偶性,可判斷④.

解答 解:①函數(shù)$f(x)=\frac{2x-1}{x+1}$=$\frac{-3}{x+1}$+2,其圖象由反比例函數(shù)y=$\frac{-3}{x}$的圖象向左平移兩單位,再向上平移2個(gè)單位得到,故圖象的對稱中心是(-1,2),故①正確;
②x∈(0,1)時(shí),x$-\frac{1}{x}$∈(-∞,0),若關(guān)于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$沒有實(shí)數(shù)根,則k的取值范圍是k≥0,故②錯(cuò)誤;
③在△ABC中,“bcosA=acosB”?“sinBcosA=sinAcosB”?“sin(A-B)=0”?“A=B”⇒“△ABC為等腰三角形”,“bcosA=acosB”是“△ABC為等邊三角形”的必要不充分條件,故③錯(cuò)誤;
④若$f(x)=sin({2x-\frac{π}{3}})$的圖象向右平移φ(φ>0)個(gè)單位后為奇函數(shù),-2φ-$\frac{π}{3}$=kπ,k∈Z,
當(dāng)k=-1時(shí),φ最小值是$\frac{π}{3}$,故④錯(cuò)誤;
故答案為:①

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的對稱性,方程的根,函數(shù)的值域,充要條件,正弦型函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,已知$sin(A+\frac{π}{6})=2cosA$.
(1)求tanA;
(2)若$B∈(0,\frac{π}{3})$,且$sin(A-B)=\frac{3}{5}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2t}\\{y=1+4t}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為$ρ=2\sqrt{2}sinθ$,則直線l與圓C的位置關(guān)系為( 。
A.相切B.相交C.相離D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在棱錐P-ABCD中,側(cè)面PDC是邊長為2的正三角形,底面ABCD是菱形,平面PCD⊥平面ABCD,M是PB的中點(diǎn),且∠BCD=120°.
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求直線PD與平面CDM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.4名同學(xué)甲、乙、丙、丁按任意次序站成一排,甲或乙站在邊上的概率為( 。
A.$\frac{1}{2}$B.$\frac{5}{6}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等腰直角△ABC中,∠ABC=90°,AB=BC=2,M,N(不與A,C重合)為AC邊上的兩個(gè)動(dòng)點(diǎn),且滿足|$\overrightarrow{MN}$|=$\sqrt{2}$,則$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范圍為( 。
A.[$\frac{3}{2}$,2]B.($\frac{3}{2}$,2)C.[$\frac{3}{2}$,2)D.[$\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某小組有7人,現(xiàn)在從任選3人相互調(diào)整位置,其余4人位置不變,則不同調(diào)整方案有( 。┓N.
A.35B.70C.210D.105

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.從6人中選出4人分別到巴黎,倫敦,悉尼,莫斯科四個(gè)城市游覽,要求每個(gè)城市有一人游覽,每人只游覽一個(gè)城市,且這6人中甲,乙兩人不去巴黎游覽,則不同的選擇方案共有240.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xoy中,己知定點(diǎn)F(l,0),點(diǎn)P在y軸上運(yùn)動(dòng),點(diǎn)M在x軸上,點(diǎn)N 為平面內(nèi)的動(dòng)點(diǎn),且滿足可$\overline{PM}•\overline{PF}=0,\overline{PM}+\overline{PN}=0$.求動(dòng)點(diǎn)N的軌跡C的方程.

查看答案和解析>>

同步練習(xí)冊答案