4.某小組有7人,現(xiàn)在從任選3人相互調(diào)整位置,其余4人位置不變,則不同調(diào)整方案有( 。┓N.
A.35B.70C.210D.105

分析 根據(jù)特殊元素特殊安排的原則,先選再排,問題得到解決.

解答 解:從7個人中任選3有C73種方法,選出的3人相互調(diào)整座位其余4人座位不變,只有2種方法(如a,b,c,3人只有cab,或bca這2種方法),
故不同的調(diào)整方案的種數(shù)有2C73=70.
故選B.

點評 本題考查了由特殊要求的排列組合問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線過點$(2,\sqrt{3})$,且雙曲線的一個焦點為$F(-\sqrt{7},0)$,則雙曲線的方程為$\frac{x^2}{4}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,銳角△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,點M為BC的中點.
(Ⅰ)試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AM}$;
(Ⅱ)若|$\overrightarrow{a}$|=5,|$\overrightarrow$|=3,sin∠BAC=$\frac{4}{5}$,求中線AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出以下四個結(jié)論:
①函數(shù)$f(x)=\frac{2x-1}{x+1}$的對稱中心是(-1,2);
②若關(guān)于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$沒有實數(shù)根,則k的取值范圍是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的充分不必要條件;
④若$f(x)=sin({2x-\frac{π}{3}})$的圖象向右平移φ(φ>0)個單位后為奇函數(shù),則φ最小值是$\frac{π}{12}$.
其中正確的結(jié)論是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.我市在“錄像課評比”活動中,評審組將從錄像課的“點播量”和“專家評分”兩個角度來進行評優(yōu).若A錄像課的“點播量”和“專家評分”中至少有一項高于B課,則稱A課不亞于B課.假設(shè)共有5節(jié)錄像課參評,如果某節(jié)錄像課不亞于其他4節(jié),就稱此節(jié)錄像課為優(yōu)秀錄像課.那么在這5節(jié)錄像課中,最多可能有5節(jié)優(yōu)秀錄像課.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知對數(shù)函數(shù)f(x)=logax(a>0,a≠1).
(1)若f(8)=3,求a的值;
(2)解不等式f(x)≤loga(2-3x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(-1,0),B(3,0),則與A距離為1且與B距離為4的點有( 。
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,0<α<π,則tan(α-$\frac{π}{4}$)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入( 。
A.n≤8?B.n>8?C.n≤7?D.n>7?

查看答案和解析>>

同步練習(xí)冊答案