10.已知數(shù)列{an}與{bn}滿(mǎn)足${a_{n+1}}+2{b_n}=2{b_{n+1}}+{a_n}({n∈{N^*}})$,若${a_1}=9,{b_n}={3^n}$(n∈N*)且$λ{(lán)a_n}>{3^n}+36({n-3})+3λ$對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是($\frac{13}{18}$,+∞).

分析 化簡(jiǎn)條件式得an+1-an=4•3n,使用累加法求出an的通項(xiàng)公式,代入條件式得出λ>$\frac{1}{2}$+$\frac{18(n-3)}{{3}^{n}}$.利用數(shù)列的單調(diào)性得出右側(cè)數(shù)列的最大值即可得出λ的范圍.

解答 解:∵bn=3n,∴bn+1=3n+1,代入${a_{n+1}}+2{b_n}=2{b_{n+1}}+{a_n}({n∈{N^*}})$,化簡(jiǎn)得an+1-an=2(bn+1-bn)=4•3n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=4(3n-1+3n-2+…+3)+9=2•3n+3.
故$λ{(lán)a_n}>{3^n}+36({n-3})+3λ$可化為λ>$\frac{1}{2}$+$\frac{18(n-3)}{{3}^{n}}$.
令cn=$\frac{1}{2}$+$\frac{18(n-3)}{{3}^{n}}$,則cn-cn-1=$\frac{18(n-3)}{{3}^{n}}$-$\frac{18(n-4)}{{3}^{n-1}}$=$\frac{18(9-2n)}{{3}^{n}}$,
∴當(dāng)n≥5,{cn}單調(diào)遞減,當(dāng)1<n≤4時(shí),{cn}單調(diào)遞增,
∴當(dāng)n=4時(shí)cn取得最大值c4=$\frac{1}{2}+$$\frac{2}{9}$=$\frac{13}{18}$,
∴λ>$\frac{13}{18}$.
故答案為($\frac{13}{18}$,+∞).

點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式,數(shù)列通項(xiàng)的求法,數(shù)列最值的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知橢圓M:(x-2)2+y2=4,則過(guò)點(diǎn)(1,1)的直線(xiàn)中被圓M截得的最短弦長(zhǎng)為2$\sqrt{2}$.類(lèi)比上述方法:設(shè)球O是棱長(zhǎng)為3的正方體ABCD-A1B1C1D1的外接球,過(guò)AC1的一個(gè)三等分點(diǎn)作球O的截面,則最小截面的面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,AB=2,BC=$\sqrt{10}$,cosA=$\frac{1}{4}$,則AB邊上的高等于( 。
A.$\frac{3\sqrt{15}}{4}$B.$\frac{3}{4}$C.$\frac{3\sqrt{15}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.(x2-3x+2)5二項(xiàng)展開(kāi)式中x2的系數(shù)為800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,AB∥CD,△PAD是等邊三角形,平面PAD⊥平面ABCD,已知AD=2,$BD=2\sqrt{3}$,AB=2CD=4.
(1)設(shè)M是PC上一點(diǎn),求證:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.給出如下四個(gè)命題:
①已知m,n表示兩條不同的直線(xiàn),α,β表示兩個(gè)不同的平面,并且m⊥α,n?β,則“α⊥β”是“m∥n”的必要不充分條件;
②對(duì)于?x∈(0,+∞),log2x<log3x成立;
③“若am2<bm2,則a<b”的逆命題為真命題;
④把函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{6}$個(gè)單位,可得到y(tǒng)=3sin2x的圖象.
其中所有正確命題的序號(hào)是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}b{x^2}+cx$(a,b,c∈R,a≠0)的圖象在點(diǎn)(x,f(x))處的切線(xiàn)的斜率為k(x),且函數(shù)$g(x)=k(x)-\frac{1}{2}x$為偶函數(shù).若函數(shù)k(x)滿(mǎn)足下列條件:①k(-1)=0;②對(duì)一切實(shí)數(shù)x,不等式$k(x)≤\frac{1}{2}{x^2}+\frac{1}{2}$恒成立.
(1)求函數(shù)k(x)的表達(dá)式;
(2)設(shè)函數(shù)$h(x)=ln{x^2}-(2m+3)x+\frac{12f(x)}{x}$(x>0)的兩個(gè)極值點(diǎn)x1,x2(x1<x2)恰為φ(x)=lnx-sx2-tx的零點(diǎn),當(dāng)$m≥\frac{{3\sqrt{2}}}{2}$時(shí),求$y=({x_1}-{x_2})φ'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=-x3+3x2+9x+a
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若a=-2,求f(x)在區(qū)間[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若關(guān)于x的方程log${\;}_{\frac{1}{3}}$(a-3x)=x-2有解,則實(shí)數(shù)a的最小值為( 。
A.4B.6C.8D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案