分析 (1)利用特殊值方法求出f(0)=2,和換元思想,得出f(-a)=4-f(a),利用定義法判定函數(shù)的單調(diào)性;
(2)根據(jù)定義得出f(1)=3,根據(jù)函數(shù)的單調(diào)性求解即可.
解答 解:(Ⅰ)對任意x,y∈R有f(x)+f(y)=2+f(x+y),
令x=y=0,
∴f(0)+f(0)=2+f(0),
∴f(0)=2,
令x=a,y=-a,
∴f(a)+f(-a)=4,
∴f(-a)=4-f(a),
令x1<x2,則x2-x1>0,
∴f(x2-x1)=f(x2)+f(-x1)-2
=f(x2)+4-f(x1)-2>2,
∴f(x2)>f(x1),
故函數(shù)在R上單調(diào)遞增;
(2)f(1)+f(1)=2+f(2),f(1)+f(2)=2+f(3),
∴f(1)=3,
∵f(a2-2a-2)<3,
∴f(a2-2a-2)<f(1),
∴a2-2a-2<1,
∴-1<a<3.
點(diǎn)評 考查了抽象函數(shù)單調(diào)性的證明和利用單調(diào)性解題.屬于常規(guī)題型,應(yīng)熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com