11.當a(a>0)取何值時,直線x+y-2a+1=0與圓x2+y2-2ax+2y+a2-a+1=0 相切,相離,相交?

分析 由圓的方程求出圓心和半徑,根據(jù)點到直線距離公式求出圓心到直線的距離,由直線與圓相交、相切、相離的條件列出不等式,求出a的取值范圍.

解答 解:由題意得,x2+y2-2ax+2y+a2-a+1=0,即(x-a)2+(y+1)2=a
圓的半徑為$\sqrt{a}$、圓心坐標是(a,-1),
∴圓心(a,-1)到直線x+y-2a+1=0距離d=$\frac{|a|}{\sqrt{2}}$,
∵直線x+y-2a+1=0與圓x2+y2-2ax+2y+a2-a+1=0相交,
∴$\frac{|a|}{\sqrt{2}}$<$\sqrt{a}$,解得0<a<2;
∵直線x+y-2a+1=0與圓x2+y2-2ax+2y+a2-a+1=0相切,
∴$\frac{|a|}{\sqrt{2}}$<$\sqrt{a}$,解得a=2;
∵直線x+y-2a+1=0與圓x2+y2-2ax+2y+a2-a+1=0相離,
∴$\frac{|a|}{\sqrt{2}}$>$\sqrt{a}$,解得a>2.

點評 本題考查直線和圓的位置關系的判斷方法:幾何法,及點到直線的距離公式的應用,考查化簡、計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.下列關系式中一定成立的是( 。
A.若a>0,b>0,則a4+b4≤a3b+ab3B.$\sqrt{7}$+$\sqrt{5}$>2$\sqrt{6}$
C.若|a|<1,|b|<1,則|$\frac{a+b}{1+ab}$|<1D.a2+b2+c2≤ab+bc+ac

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.線段x-2y+1=0(-1≤x≤3)的垂直平分線方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)是定義在(0,+∞)上的函數(shù),且對任意正數(shù)x,y都滿足f(x+y)=f(x)f(y),且當x>1時,f(x)>2,f(2)=4.則f(x2)>2f(x+1)的解為{x|x>2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線2x-y+m=0和圓O:x2+y2=5,
(1)m為何值時,沒有公共點;
(2)m為何值時,截得的弦長為2;
(3)若直線和圓交于A、B兩點,此時OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,|$\overrightarrow{a}$-4$\overrightarrow$|=2$\sqrt{7}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.命題“?x>0,x2+x-2>0”的否定是?x>0,x2+x-2≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.因發(fā)生交通事故,一輛貨車上的某種液體潰漏到一池塘中,為了治污,根據(jù)環(huán)保部門的建議,現(xiàn)決定在池塘中投放一種與污染液體發(fā)生化學反應的藥劑,已知每投放a(1≤a≤4,a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關系式近似為y=a•f(x),其中f(x)=$\left\{{\begin{array}{l}{\frac{16}{8-x}-1({0≤x≤4})}\\{5-\frac{1}{2}x({4<x≤10})}\end{array}}$.若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中藥劑的濃度不低于(克/升)時,它才能起到有效治污的作用.
(1)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(2)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖矩形ABCD兩條對角線相交于M(2,0),AB邊所在直線方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上,
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程;
(3)過外接圓外一點N(1,6),向圓作兩條切線,切點分別為E、F,求EF所在直線方程.

查看答案和解析>>

同步練習冊答案