A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,$\frac{7}{12}$) | C. | ($\frac{1}{2}$,1) | D. | ($\frac{7}{12}$,1) |
分析 $\left\{\begin{array}{l}{(\frac{1}{2}-a)n+1(n<6)}\\{{a}^{n-5}(n≥6)}\end{array}\right.$,若對于任意的n∈N*都有an>an+1,可得$\frac{1}{2}-a$<0,a5>a6,0<a<1.解出即可得出.
解答 解:∵滿足an=$\left\{\begin{array}{l}{(\frac{1}{2}-a)n+1(n<6)}\\{{a}^{n-5}(n≥6)}\end{array}\right.$,若對于任意的n∈N*都有an>an+1,
∴$\frac{1}{2}-a$<0,a5>a6,0<a<1.
∴$\frac{1}{2}-$a<0,$(\frac{1}{2}-a)×5$+1>a,0<a<1,
解得$\frac{1}{2}<a<\frac{7}{12}$.
故選:B.
點評 本題考查了數(shù)列與函數(shù)的單調(diào)性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e0=1與ln 1=0 | B. | log39=2與9${\;}^{\frac{1}{2}}$=3 | ||
C. | 8${\;}^{-\frac{1}{3}}$=$\frac{1}{2}$與log8$\frac{1}{2}$=-$\frac{1}{3}$ | D. | log77=1與71=7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com