分析 利用向量的坐標公式:終點坐標減去始點坐標,求出向量的坐標;據三點共線則它們確定的向量共線,利用向量共線的充要條件列出方程得到a,b的關系.
解答 解:∵點A(3,3)、B(a,0)、C(0,b)(ab≠0)
∴$\overrightarrow{AB}$=(a-3,-3),$\overrightarrow{AC}$=(-3,b-3),
∵點A(3,3)、B(a,0)、C(0,b)(ab≠0)共線
∴$\overrightarrow{AB}∥\overrightarrow{AC}$
∴(a-3)×(b-3)=-3×(-3)
所以ab-3a-3b=0,
∴$\frac{1}{a}$+$\frac{1}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點評 本題考查利用點的坐標求向量的坐標、向量共線的充要條件、向量共線與三點共線的關系.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈(-∞,0),x3+2x<0 | B. | ?x∈[0,+∞),x3+2x<0 | C. | ?x∈(-∞,0),x3+2x≥0 | D. | ?x∈[0,+∞),x3+2x≥0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (cosx)′=sinx | B. | (ax)′=axlna | C. | ${({sin\frac{π}{12}})^'}=cos\frac{π}{12}$ | D. | ${({{x^{-5}}})^'}=-\frac{1}{5}{x^{-6}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,-2016) | B. | (1,2016) | C. | (-1,2016) | D. | (1,-2016) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com