7.函數(shù)f(x)=3x+2x-3的零點(diǎn)所在的區(qū)間是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

分析 由函數(shù)的解析式求得f(0)f(1)<0,再根據(jù)根據(jù)函數(shù)零點(diǎn)的判定定理可得函數(shù)f(x)=3x+2x-3的零點(diǎn)所在的區(qū)間.

解答 解:∵函數(shù)f(x)=3x+2x-3在R上單調(diào)遞增,
∴f(0)=1+0-3=-2<0,f(1)=3+2-3=2>0,
∴f(0)f(1)<0.
根據(jù)函數(shù)零點(diǎn)的判定定理可得函數(shù)f(x)=3x+2x-3的零點(diǎn)所在的區(qū)間是(0,1),
故選:C.

點(diǎn)評(píng) 本題主要考查求函數(shù)的值,函數(shù)零點(diǎn)的判定定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知拋物線y2=12x上一點(diǎn)M到焦點(diǎn)的距離為8,則點(diǎn)M的橫坐標(biāo)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知復(fù)數(shù)z1=1+$\sqrt{3}$i,|z2|=3,z1z2是正實(shí)數(shù),則復(fù)數(shù)z2=z2=$\frac{3}{2}-\frac{3\sqrt{3}}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知角α為第四象限角,且$cosα=\frac{1}{3}$,則sinα=-$\frac{2\sqrt{2}}{3}$;tan(π-α)=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x,則f(-1)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={0,1,2},若A∩∁ZB=∅(Z是整數(shù)集合),則集合B可以為( 。
A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且滿足b=c,$\frac{a}$=$\frac{1-cosB}{cosA}$,若點(diǎn)O是△ABC外一點(diǎn),∠AOB=θ(0<θ<π),OA=2,OB=1,則平面四邊形OACB面積的最大值是( 。
A.$\frac{4+5\sqrt{3}}{4}$B.$\frac{8+5\sqrt{3}}{4}$C.3D.$\frac{4+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an},a1=1,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$,則a10的值為( 。
A.5B.$\frac{1}{5}$C.$\frac{11}{2}$D.$\frac{2}{11}$

查看答案和解析>>

同步練習(xí)冊(cè)答案