6.已知函數(shù)f(x)=2sinx-3x,若對(duì)任意m∈[-2,2],f(ma-3)+f(a2)>0的恒成立,則a的取值范圍是( 。
A.(-1,1)B.(-∞,-1)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(1,+∞)

分析 先利用定義、導(dǎo)數(shù)分別判斷出函數(shù)的奇偶性、單調(diào)性,然后利用函數(shù)的性質(zhì)可去掉不等式中的符號(hào)“f”,轉(zhuǎn)化具體不等式,借助一次函數(shù)的性質(zhì)可得a的不等式組,解出可得答案.

解答 解:∵f(-x)=2sin(-x)-3(-x)=-(2sinx-3x)=-f(x),
∴f(x)是奇函數(shù),
又f'(x)=2cosx-3<0,∴f(x)單調(diào)遞減,
f(ma-3)+f(a2)>0可化為f(ma-3)>-f(a2)=f(-a2),
由f(x)遞減知ma-3<-a2,即ma+a2-3<0,
∴對(duì)任意的m∈[-2,2],f(ma-3)+f(a2)>0恒成立,
等價(jià)于對(duì)任意的m∈[-2,2],ma+a2-3<0恒成立,
則$\left\{\begin{array}{l}{-2a+{a}^{2}-3<0}\\{2a+{a}^{2}-3<0}\end{array}\right.$,解得-1<a<1,
故選:A.

點(diǎn)評(píng) 本題考查恒成立問題,考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想,考查學(xué)生靈活運(yùn)用知識(shí)解決問題的能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=4sinθ.
(Ⅰ)求曲線C1與C2交點(diǎn)的平面直角坐標(biāo);
(Ⅱ)A,B兩點(diǎn)分別在曲線C1與C2上,當(dāng)|AB|最大時(shí),求△OAB的面積(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份20112012201320142015
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(1)求y關(guān)于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2016年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中,
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,底面是邊長(zhǎng)為2的正三角形,倒棱AA1⊥平面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=2FB=2.
(Ⅰ)若點(diǎn)M是線段AC的中點(diǎn),證明:
(1)MB∥平面AEF;
(2)平面AEF⊥平面ACC1A1;
(Ⅱ)求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若G是△ABC的重心,且滿足$\overrightarrow{GA}+\overrightarrow{GB}=λ\overrightarrow{GC}$,則λ=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}-x,x≤2}\\{\frac{1}{2-x},x>2}\end{array}\right.$,則f(f(-3))的值為( 。
A.$\frac{1}{32}$B.-$\frac{1}{28}$C.$\frac{1}{28}$D.-$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x2<4},B={x∈Z|-3≤x<1},則A∩B=( 。
A.{-2,-1,0}B.(-1,0)C.{-1,0}D.(-3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點(diǎn)為F,離心率為$\frac{1}{2}$,直線l與橢圓相交于A,B兩點(diǎn),當(dāng)AB⊥x軸時(shí),△ABF的周長(zhǎng)最大值為8.
(1)求橢圓的方程;
(2)若直線l過點(diǎn)M(-4,0),求當(dāng)△ABF面積最大時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=45°,四邊形BCC1B1為矩形,若AC=5,AB=4,BC=3.
(1)求證:BC∥平面A1B1C1;
(2)求證:AB1⊥平面A1BC;
(3)求三棱錐C-A1B1C1的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案