17.隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份20112012201320142015
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(1)求y關(guān)于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2016年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中,
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

分析 (1)利用公式求出a,b,即可求y關(guān)于t的回歸方程;
(2)t=6,代入回歸方程,即可預(yù)測(cè)該地區(qū)2015年的人民幣儲(chǔ)蓄存款

解答 解:(1)由題意,這里n=5,$\overline{t}$=3,$\overline{y}$=$\frac{36}{5}$=7.2.…2‘
從而$\widehat$=$\frac{120-5×3×7.2}{55-5×{3}^{2}}$=$\frac{12}{10}$=1.2,$\widehat{a}$=7.2-1.2×3=3.6,…6‘
故所求回歸方程為$\widehat{y}$=1.2t+3.6.…8‘
(2)將t=6代入回歸方程可預(yù)測(cè)該地區(qū)2016年的人民幣儲(chǔ)蓄存款為
$\widehat{y}$=1.2×6+3.6=10.8(千億元).…12‘

點(diǎn)評(píng) 本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.焦點(diǎn)為(0,6),且與雙曲線$\frac{{x}^{2}}{2}$-y2=1有相同的漸近線的雙曲線方程是( 。
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1B.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1C.$\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1D.$\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在空間直角坐標(biāo)系O-xyz中,一個(gè)四面體的頂點(diǎn)坐標(biāo)分別是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正視圖以yOz平面為投射面,則該四面體左(側(cè))視圖面積為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在三棱錐P-ABC中,△PAB是等邊三角形,∠APC=∠BPC=60°.
(Ⅰ)求證:AB⊥PC;
(Ⅱ)若PB=4,BE⊥PC,求三棱錐B-PAE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2+S3=0,則公比q=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知圓(x+1)2+y2=2,則其圓心和半徑分別為(  )
A.(1,0),2B.(-1,0),2C.(1,0),$\sqrt{2}$D.(-1,0),$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若tanα=3,則${cos^2}({α+\frac{π}{4}})-{cos^2}({α-\frac{π}{4}})$=( 。
A.$-\frac{3}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=2sinx-3x,若對(duì)任意m∈[-2,2],f(ma-3)+f(a2)>0的恒成立,則a的取值范圍是(  )
A.(-1,1)B.(-∞,-1)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$f(x)=sin(2017x+\frac{π}{6})+cos(2017x-\frac{π}{3})$的最大值為A,若存在實(shí)數(shù)x1,x2使得對(duì)任意實(shí)數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為(  )
A.$\frac{π}{2017}$B.$\frac{2π}{2017}$C.$\frac{4π}{2017}$D.$\frac{π}{4034}$

查看答案和解析>>

同步練習(xí)冊(cè)答案