若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,求ab的最大值.
考點:函數(shù)在某點取得極值的條件
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出導(dǎo)函數(shù),利用函數(shù)在極值點處的導(dǎo)數(shù)值為0得到a,b滿足的條件,利用基本不等式求出ab的最值.
解答: 解:由題意,求導(dǎo)函數(shù)f′(x)=12x2-2ax-2b
∵在x=1處有極值
∴a+b=6
∵a>0,b>0
∴ab≤(
a+b
2
2=9,當(dāng)且僅當(dāng)a=b=3時取等號
∴ab的最大值等于9.
點評:本題考查函數(shù)在極值點處的導(dǎo)數(shù)值為0、考查利用基本不等式求最值,需注意:一正、二定、三相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
sin(2x-
π
6
)
的圖象可以看作是函數(shù)y=
1
2
sin2x的圖象( 。
A、向左平移
π
6
B、向右平移
π
6
C、向左平移
π
12
D、向右平移
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是(-a,a)上的可導(dǎo)奇函數(shù),且f'(x)不恒為零,則f'(x)在(-a,a)上( 。
A、必為奇函數(shù)
B、必為偶函數(shù)
C、是非奇非偶函數(shù)
D、可能為奇函數(shù),也可能是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M∈{1,-2,3},N∈{-4,5,6,-7},從兩個集合中各取一個元素作為點的坐標(biāo),求這樣的坐標(biāo)在直角坐標(biāo)系中可表示第一、二象限內(nèi)不同的點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2+b,g(x)=alnx.
(Ⅰ)若f(x)在x∈[-
1
2
,1)上的最大值為
3
8
,求實數(shù)b的值;
(Ⅱ)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為保持水資源,宣傳節(jié)約用水,某校4名志愿者準(zhǔn)備去附近的甲、乙、丙三家公園進(jìn)行宣傳活動,每名志愿者都可以從三家公園中隨機選擇一家,且每人的選擇相互獨立.
(Ⅰ)求4人恰好選擇了同一家公司的概率;
(Ⅱ)設(shè)選擇甲公園的志愿者的人數(shù)為X,試求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)
25
9
+(
27
64
)-
1
3
+(0.1)-10
(2)log3
427
3
+lg25+2lg2+eln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線l的參數(shù)方程為
x=
1
2
+tcosα
y=tsinα
(t為參數(shù),0<α<π),曲線C的極坐標(biāo)方程為ρ•sin2θ=2cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)α變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當(dāng)PD=
2
AB=2,E是PB的中點,求三棱錐A-PED的體積.

查看答案和解析>>

同步練習(xí)冊答案