在正三棱錐S-ABC中,異面直線AS與BC所成角的大小為_(kāi)_____.
取AC中點(diǎn)E,連接SE,BE,∵SA=SC,∴SE⊥AC,同理得:BE⊥AC
∵SE∩BE=E,SE,BE?面SBE,∴AE⊥面SBE,
∵SB?面SBE,∴AE⊥SB
故直線SB與AC所成角為90°
故答案為:90°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

長(zhǎng)方體ABCD-A1B1C1D1中AB=AA1=2,AD=1,E為CC1的中點(diǎn),則異面直線BC1與AE所成角的余弦值為(  )
A.
10
10
B.
30
10
C.
2
15
10
D.
3
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直三棱柱A1B1C1ABC中,C1C=CB=CA=2,ACCB. DE分別為棱C1C、B1C1的中點(diǎn).
正切值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M在A上,且AM=AB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線A1D1的距離的平方與P到點(diǎn)M的距離的平方差為1,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是                    .  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在棱長(zhǎng)為1的正方體ABCD-ABCD的底面ABCD內(nèi)取一點(diǎn)E,使AE與AB、AD所成的角都是60°,則線段AE的長(zhǎng)為( )
    A.     B.    C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為1,高為h(h>3),點(diǎn)M在側(cè)棱BB1上移動(dòng),并且M到底面ABC的距離為x,且AM與側(cè)面BCC1B1所成的角為α.
(1)若α在區(qū)間[
π
6
,
π
4
]
上變化,求x的變化范圍;
(2)若α為
π
6
,求AM與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正方體ABCD-A1B1C1D1中,AA1=a,E、F分別是BC、DC的中點(diǎn),則AD1與EF所成的角的大小為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點(diǎn),C1是圓柱上底面弧A1B1的中點(diǎn),那么異面直線AC1與BC所成角的正切值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

自二面角內(nèi)一點(diǎn)分別向兩個(gè)半平面引垂線,則兩垂線所成的角與二兩角的平面角       

查看答案和解析>>

同步練習(xí)冊(cè)答案