【題目】已知P是圓F1:(x+12+y216上任意一點(diǎn),F21,0),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.

1)求曲線C的方程;

2)記曲線Cx軸交于A,B兩點(diǎn),M是直線x1上任意一點(diǎn),直線MA,MB與曲線C的另一個(gè)交點(diǎn)分別為DE,求證:直線DE過定點(diǎn)H4,0.

【答案】12)證明見解析

【解析】

1)根據(jù)橢圓的定義即可求出點(diǎn)Q的軌跡方程;

2)設(shè)出點(diǎn)M的坐標(biāo),表示出直線MA的方程,與橢圓方程聯(lián)立可求得點(diǎn)的坐標(biāo),同理可求得點(diǎn)的坐標(biāo),再利用三點(diǎn)共線的條件即可證出.

1)由已知|QF1|+|QF2||QF1|+|QP||PF1|4,

所以點(diǎn)Q的軌跡為以為F1,F2焦點(diǎn),長軸長為4的橢圓,

2a4a2,c1,b2a2c23

所以曲線C的方程為

2)由(1)可得A(﹣2,0),B2,0),設(shè)點(diǎn)M的坐標(biāo)為(1,m

直線MA的方程為:

聯(lián)立消去y整理得:(4m2+27x2+16m2x+16m21080,

設(shè)點(diǎn)D的坐標(biāo)為(xD,yD),則,

,則

直線MB的方程為:y=﹣mx2

y=﹣mx2)與聯(lián)立消去y整理得:(4m2+3x216m2x+16m2120

設(shè)點(diǎn)E的坐標(biāo)為(xE,yE),則

,則

HD的斜率為

HE的斜率為

因?yàn)?/span>k1k2,所以直線DE經(jīng)過定點(diǎn)H.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值是(

A.10 B.11 C.12 D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的右焦點(diǎn)坐標(biāo)為,且點(diǎn)C上.

1)求橢圓的方程;

2)過點(diǎn)的直線lC交于MN兩點(diǎn),P為線段MN的中點(diǎn),AC的左頂點(diǎn),求直線AP的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中點(diǎn)表示十月的平均最高氣溫約為,點(diǎn)表示四月的平均最低氣溫約為.下面敘述不正確的是(

A.各月的平均最高氣溫都在以上

B.六月的平均溫差比九月的平均溫差大

C.七月和八月的平均最低氣溫基本相同

D.平均最低氣溫高于的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,,平面PAB,,點(diǎn)E滿足.

1)證明:;

2)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),證明的圖象與軸相切;

(2)當(dāng)時(shí),證明存在兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和直線的極坐標(biāo)方程;

(2)在(1)的條件下,直線的極坐標(biāo)方程為,設(shè)曲線與直線的交于點(diǎn)和點(diǎn),曲線與直線的交于點(diǎn)和點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是曲線上任意一點(diǎn),動(dòng)點(diǎn)滿足.

(1)求點(diǎn)的軌跡的方程;

(2)過點(diǎn)的直線交兩點(diǎn),過原點(diǎn)與點(diǎn)的直線交直線于點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓上一動(dòng)點(diǎn)(與左、右頂點(diǎn)不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.

1)求橢圓C的方程;

2)過的直線交橢圓兩點(diǎn),過軸的垂線交橢圓與另一點(diǎn)不與重合).設(shè)的外心為,求證為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案