已知函數(shù)為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對任意的恒成立,求實(shí)數(shù)的取值范圍.
(1)函數(shù)的單調(diào)遞減區(qū)間為;(2)實(shí)數(shù)的取值范圍是.

試題分析:(1)將代入函數(shù)解析式并求出相應(yīng)的導(dǎo)數(shù),利用導(dǎo)數(shù)并結(jié)合函數(shù)的定義域便可求出函數(shù)的單調(diào)遞減區(qū)間;(2)構(gòu)造新函數(shù),將問題轉(zhuǎn)化為“對任意時(shí),恒成立”,進(jìn)而轉(zhuǎn)化為,圍繞這個(gè)核心問題結(jié)合分類討論的思想求出參數(shù)的取值范圍.
試題解析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021657106566.png" style="vertical-align:middle;" />,
當(dāng)時(shí),,                           2分
,解得,所以函數(shù)的單調(diào)遞減區(qū)間為      4分
(2)設(shè)
因?yàn)閷θ我獾?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021656779492.png" style="vertical-align:middle;" />,恒成立,所以恒成立,
,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021656747388.png" style="vertical-align:middle;" />,令,得,                7分
①當(dāng),即時(shí),
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021657387581.png" style="vertical-align:middle;" />時(shí),,所以上單調(diào)遞減,
因?yàn)閷θ我獾?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021656779492.png" style="vertical-align:middle;" />,恒成立,
所以時(shí),,即,
解得,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021657527628.png" style="vertical-align:middle;" />。所以此時(shí)不存在;            10分
②當(dāng),即時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021657590792.png" style="vertical-align:middle;" />時(shí),,時(shí),,
所以上單調(diào)遞增,在上單調(diào)遞減,
因?yàn)閷θ我獾?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021656779492.png" style="vertical-align:middle;" />,恒成立,所以,且
,解得
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021657793704.png" style="vertical-align:middle;" />,所以此時(shí);                 13分
③當(dāng),即時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021657387581.png" style="vertical-align:middle;" />時(shí),,
所以上單調(diào)遞增,由于,符合題意;            15分
綜上所述,實(shí)數(shù)的取值范圍是                      16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中
(1)若時(shí),記存在使
成立,求實(shí)數(shù)的取值范圍;
(2)若上存在最大值和最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)是否存在點(diǎn),使得函數(shù)的圖像上任意一點(diǎn)P關(guān)于點(diǎn)M對稱的點(diǎn)Q也在函數(shù)的圖像上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若在(0,)單調(diào)遞減,求a的最小值
(Ⅱ)若有兩個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實(shí)數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),其中,則是偶函數(shù)的充要條件是(    )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),,設(shè)函數(shù),且函數(shù)的零點(diǎn)均在區(qū)間內(nèi),則的最小值為(     )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

同步練習(xí)冊答案