9.已知角α的終邊過點(diǎn)P(-8sin390°,-6m),且$cosα=-\frac{4}{5}$,則m為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.±$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由條件利用任意角的三角函數(shù)的定義,求出m的值.

解答 解:由題意可得x=-8sin390°=-4,y=-6m,r=|OP|=$\sqrt{16+36{m}^{2}}$,
cosα=$\frac{-4}{\sqrt{16+36{m}^{2}}}$=-$\frac{4}{5}$,
解得m=$±\frac{1}{2}$,
故選C.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖等邊三角形ABC所在平面與菱形BCDE所在平面互相垂直,F(xiàn)為AE中點(diǎn),AB=2,∠CBE=60°.
(1)求證:AC∥平面BDF;
(2)求點(diǎn)C到平面ABE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知某幾何體的三視圖如圖所示,其中網(wǎng)格紙的小正方形的邊長是1,則該幾何體    的表面積為( 。
A.4B.4+4$\sqrt{2}$C.8+4$\sqrt{2}$D.8+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)計(jì)算:$cos\frac{9π}{4}+tan(-\frac{π}{4})+sin21π$;
(2)已知sinθ=2cosθ,求值$\frac{{{{sin}^2}θ+2sinθcosθ}}{{2{{sin}^2}θ-{{cos}^2}θ}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=xa的圖象過點(diǎn)(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),記數(shù)列{an}的前n項(xiàng)和為Sn,則S2017=(  )
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2017}-1$D.$\sqrt{2017}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求過點(diǎn)A(2,4)與圓x2+y2=4相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若|x+3|+|x-1|>k對任意的x∈R恒成立,則實(shí)數(shù)k的取值范圍為(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(α)=$\frac{sin(π-α)cos(2π-α)cos(\frac{3π}{2}+α)}{cos(\frac{π}{2}+α)sin(π+α)}$
(1)若α=-$\frac{π}{3}$,求f(α)的值;
(2)若α為第二象限角,且cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$,則$\frac{y}{x}$的取值范圍為$[{-\frac{1}{8},\frac{5}{8}}]$.

查看答案和解析>>

同步練習(xí)冊答案