A. | 1 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 利用同角三角函數(shù)基本關(guān)系式可求sinA,進(jìn)而利用正弦定理可求sinC,利用大邊對大角可得B的值,即可求b的值.
解答 解:在△ABC中,∵cosA=$\frac{\sqrt{3}}{2}$,
∴sinA=$\frac{1}{2}$,
在△ABC中,a=1,c=$\sqrt{3}$,由正弦定理可得:sinC=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∵b<c,可得:A=30°,C=120°,
∴B=30°,
∴b=a=1.
故選:A.
點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理,大邊對大角,勾股定理等知識在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{π}{2}+2kπ,\frac{3}{2}π+2kπ](k∈Z)$ | B. | $[kπ+\frac{π}{4},kπ+\frac{3}{4}π](k∈Z)$ | ||
C. | [π+2kπ,3π+2kπ](k∈Z) | D. | $[kπ-\frac{π}{4},kπ+\frac{π}{4}](k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {0,1,2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行于同一條直線的兩條直線平行 | |
B. | 如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線在此平面內(nèi) | |
C. | 如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線 | |
D. | 如果兩個角的兩邊分別平行,則這兩個角相等或互補(bǔ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4} | B. | {1,5} | C. | {2,3,4} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {0,1} | C. | {0,1,2} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -3 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com