16.在直三棱柱ABC-A1BlC1中,平面α與棱AB,AC,A1C1,A1B1分別交于點E,F(xiàn),G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有( 。
A.①②B.②③C.①③D.①②③

分析 在①中,由AA1$\underset{∥}{=}$EH$\underset{∥}{=}$GF,知四邊形EFGH是平行四邊形;在②中,平面α與平面BCC1B1平行或相交;在③中,EH⊥平面BCEF,從而平面α⊥平面BCFE.

解答 解:如圖,∵在直三棱柱ABC-A1BlC1中,
平面α與棱AB,AC,A1C1,A1B1分別交于點E,F(xiàn),G,H,且直線AA1∥平面α.
∴AA1$\underset{∥}{=}$EH$\underset{∥}{=}$GF,∴四邊形EFGH是平行四邊形,故①正確;
∵EF與BC不一定平行,∴平面α與平面BCC1B1平行或相交,故②錯誤;
∵AA1$\underset{∥}{=}$EH$\underset{∥}{=}$GF,且AA1⊥平面BCEF,∴EH⊥平面BCEF,
∵EH?平面α,∴平面α⊥平面BCFE,故③正確.
故選:C.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.某商場計劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進場試銷10天.兩個廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計,兩個廠家的試銷情況莖葉圖如下:
8998993899
201042111010
(Ⅰ)現(xiàn)從甲廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(。┯浺覐S家的日返利額為X(單位:元),求X的分布列和數(shù)學期望;
(ⅱ)商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學的統(tǒng)計學知識為商場作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,圓O與離心率為$\frac{{\sqrt{3}}}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于點M(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點A、C與點B、D(均不重合).
(ⅰ)若P為橢圓上任一點,記點P到兩直線的距離分別為d1、d2,求$d_1^2+d_2^2$的最大值;
(ⅱ)若$3\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1與l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在二項式(x2-$\frac{1}{x}$)n的展開式中,所有二項式系數(shù)的和是32,則展開式中所有整式項的系數(shù)和為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點分別為F1,F(xiàn)2,雙曲線上一點P滿足PF2⊥x軸,若|F1F2|=12,|PF2|=5,則該雙曲線的離心率為( 。
A.$\frac{13}{12}$B.$\frac{12}{5}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0
(Ⅰ)求角C的大。
(Ⅱ)若c=6,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在等比數(shù)列{an}中,a2•a3是a12和a42的等差中項,則$\frac{{S}_{6}}{{S}_{3}}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}-sinx,x>0\\ sinx,x≤0\end{array}\right.$,則下列結(jié)論正確的是( 。
A.f(x)是奇函數(shù)
B.f(x)是偶函數(shù)
C.f(x)是周期函數(shù)
D.f(x)在$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ](k∈z)$上為減函數(shù)

查看答案和解析>>

同步練習冊答案