【題目】如圖,三棱臺的底面是正三角形,平面平面,.
(1)求證:;
(2)若,求直線與平面所成角的正弦值.
【答案】(Ⅰ)見證明;(Ⅱ)
【解析】
(Ⅰ)取的中點為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量為,設(shè)與平面所成角為,則,即可得到答案。
解:(Ⅰ)取的中點為,連結(jié).
由是三棱臺得,平面平面,從而.
∵,∴,
∴四邊形為平行四邊形,∴.
∵,為的中點,
∴,∴.
∵平面平面,且交線為,平面,
∴平面,而平面,
∴.
(Ⅱ)連結(jié).
由是正三角形,且為中點,則.
由(Ⅰ)知,平面,,
∴,,
∴,,兩兩垂直.
以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,
∴,,.
設(shè)平面的一個法向量為.
由可得,.
令,則,,∴.
設(shè)與平面所成角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點務(wù)極點,軸正半軸為極軸建立極坐標(biāo)系,曲線,
(1)求曲線,的直角坐標(biāo)方程;
(2)曲線和的交點為,,求以為直徑的圓與軸的交點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有、兩個題目,該學(xué)生答對、兩題的概率分別為、,兩題全部答對方可進(jìn)入面試.面試要回答甲、乙兩個問題,該學(xué)生答對這兩個問題的概率均為,至少答對一個問題即可被聘用,若只答對一問聘為職員,答對兩問聘為助理(假設(shè)每個環(huán)節(jié)的每個題目或問題回答正確與否是相互獨立的).
(1)求該學(xué)生被公司聘用的概率;
(2)設(shè)該學(xué)生應(yīng)聘結(jié)束后答對的題目或問題的總個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )
A. 36種B. 44種C. 48種D. 54種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底,,為常數(shù)且)
(1)當(dāng)時,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)當(dāng)時,若對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確命題的個數(shù)是( 。
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若,則
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,點是圓上的動點,點,線段的垂直平分線交于點.
(1)求點的軌跡的方程;
(2)過點作斜率不為0的直線與(1)中的軌跡交于,兩點,點關(guān)于軸的對稱點為,連接交軸于點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com