【題目】已知函數(shù)
(1)若,求函數(shù)的表達(dá)式;
(2)在(1)的條件下,設(shè)函數(shù),若上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)是否存在使得函數(shù)在上的最大值是4?若存在,求出的值;若不存在,請說明理由。
【答案】(1);(2)或;(3)存在,或。
【解析】
試題分析:(1),所以,此時函數(shù);(2)在(1)的條件下,函數(shù)為二次函數(shù),對稱軸為,若函數(shù)在區(qū)間上是單調(diào)函數(shù),則應(yīng)滿足或,解得:或;(3)函數(shù)的對稱軸方程為,分和兩種情況進(jìn)行討論,當(dāng)時,開口向上,對稱軸,此時函數(shù)在區(qū)間上的最大值應(yīng)在時取得,即,解得:與矛盾,當(dāng)時,開口向下,此時函數(shù)最大值應(yīng)在或或處取得,經(jīng)驗證,在及處取得最大值均不符合題意,若在處取得最大值,則,整理得,所以或,此時對稱軸分別為和,均符合題意。
試題解析:(1)∵ 解得
∴
(2)由(1)可得
其對稱軸方程為
若在上為增函數(shù),則,解得
若在上為減函數(shù),則,解得
綜上可知,的取值范圍為或
(3)假設(shè)存在滿足條件的,則的最大值只可能在處取得,
其中
若,則有 得的值不存在,舍去
若,則有,解得
而時,對稱軸,
則最大值應(yīng)在處取得,與條件矛盾,舍去
若,則,且,
化簡得,解得或 …(13分)
綜上可知,當(dāng)或時,函數(shù)在上的最大值是4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年騎車鍛煉越來越受到人們的喜愛,男女老少踴躍參加,我校課外活動小組利用春節(jié)放假時間進(jìn)行社會實踐,對年齡段的人群隨機抽取人進(jìn)行了一次“你是否喜歡騎車鍛煉”的問卷,將被調(diào)查人員分為“喜歡騎車”和“不喜歡騎車”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
(1)補全頻率分布直方圖,并的值;
(2)從歲年齡段的“喜歡騎車”中采用分層抽樣法抽取6人參加騎車鍛煉體驗活動,求其中選取2名領(lǐng)隊來自同一組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為。
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,當(dāng)長最小時,求直線的方程;
(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查200名50歲以上有吸煙習(xí)慣與患慢性氣管炎的人的情況,獲數(shù)據(jù)如下
患慢性氣管炎 | 未患慢性氣管炎 | 總計 | |
吸煙 | 30 | 100 | |
不吸煙 | 35 | 100 | |
合計 | 105 | 95 | 200 |
(1)表中,的值分別是多少;
(2)試問:有吸煙習(xí)慣與患慢性氣管炎病是否有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大種植面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中三個年級共有學(xué)生名,各年級男生、女生的人數(shù)如下表:
高一年級 | 高二年級 | 高三年級 | |
男生 | |||
女生 |
已知在高中學(xué)生中隨機抽取一名同學(xué)時,抽到高三年級女生的概率為.
(Ⅰ)求的值;
(Ⅱ)現(xiàn)用分層抽樣的方法在全校抽取名學(xué)生,則在高二年級應(yīng)抽取多少名學(xué)生?
(Ⅲ)已知,求高二年級男生比女生多的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com