A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
分析 函數(shù)f(x)=x2+tx+t,?x∈R,f(x)>0,利用△=t2-4t<0,0<t<4,運用二次方程根的分布,求出“?a,b∈(0,1)使得g(a)=g(b)=0”為真命題的t的范圍,即可求出概率.
解答 解:∵函數(shù)f(x)=x2+tx+t,?x∈R,f(x)>0,
∴△=t2-4t<0,∴0<t<4.
“?a,b∈(0,1)使得g(a)=g(b)=0”為真命題,
則$\left\{\begin{array}{l}{0<\frac{t+1}{3}<1}\\{t>0}\\{3-2(t+1)+t>0}\\{4(t+1)^{2}-12t>0}\end{array}\right.$,∴0<t<1,
∴“?a,b∈(0,1)使得g(a)=g(b)=0”為真命題的概率是$\frac{1-0}{4-0}$=$\frac{1}{4}$,
故選C.
點評 本題考查不等式恒成立問題,考查二次方程根的分布,考查概率的計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2) | B. | (-2,0) | C. | (1,2) | D. | (-2,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$] | B. | (一∞,$\frac{1}{e}$] | C. | (0,$\frac{1}{e}$) | D. | (一∞,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,4] | B. | [0,4) | C. | [0,3)∪(3,4] | D. | [0,3)∪(3,4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com