1.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=$\frac{1}{2}$AD.
(1)求證:CD⊥平面PAC;
(2)在棱PD上是否存在一點(diǎn)E,使CE∥平面PAB?若存在,指出E的位置;若不存在,說明理由.

分析 (1)設(shè)PA=1,由勾股定理逆定理得AC⊥CD,根據(jù)線面垂直的性質(zhì)可知PA⊥CD,又PA∩AC=A,根據(jù)線面垂直的判定定理可知CD⊥面PAC,
(2)在棱PD上存在一點(diǎn)E,E為PD中點(diǎn),使CE∥平面PAB,取AD的中點(diǎn)為F.連接EF,CF.由題設(shè)條件推導(dǎo)出EF∥PA,CF∥AB,得到面EFC∥面PAB,由此能夠證明CE∥面PAB.

解答 解:(1)證明:設(shè)PA=1.
由題意PA=BC=1,AD=2.
∵AB=1,BC=$\frac{1}{2}$,由∠ABC=∠BAD=90°.易得CD=AC=$\sqrt{2}$.
由勾股定理逆定理得AC⊥CD.
又∵PA⊥面ABCD,CD?面ABCD,
∴PA⊥CD.又PA∩AC=A,∴CD⊥面PAC.
(2)在棱PD上存在一點(diǎn)E,E為PD中點(diǎn),使CE∥平面PAB
理由:取AD的中點(diǎn)F.連接EF,CF.
∵PA⊥面ABCD.底面ABCD為直角梯形,∠ABC=∠BAD=90°,BC=$\frac{1}{2}$AD,E為PD的中點(diǎn).
∴EF∥PA,CF∥AB,
∴面EFC∥面PAB,
所以CE∥面PAB.∴棱PD上存在一點(diǎn)E,E為PD中點(diǎn),使CE∥平面PAB.

點(diǎn)評 本小題主要考查空間中的線面關(guān)系,考查線面平行、面面垂直的判定,考查空間想象能力和推理論證能力,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l過點(diǎn)(1,2),且在x,y軸上的截距分別為a,b,若a=2b,則直線l的方程為2x-y=0或x+2y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=|sinx|的周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,an+1=2Sn+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an+1,求數(shù)列{$\frac{b_n}{a_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短軸端點(diǎn)到右焦點(diǎn)F2(1,0)的距離為2,平行四邊形ABCD的四個(gè)頂點(diǎn)都在橢圓G上.
(Ⅰ)求橢圓G的方程;
(Ⅱ)若直線AB和AD的斜率存在且分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)當(dāng)直線AB和DC分別過橢圓G的左焦點(diǎn)F1和右焦點(diǎn)F2時(shí),求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若$\overrightarrow{a}$=(1,$\sqrt{5cosα}$),α為銳角,且|$\overrightarrow{a}$|=$\sqrt{2}$,則cos(180°-α)=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若6x2+4y2+6xy=1,x,y∈R,則x2-y2的最大值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a>b,下列關(guān)系式中一定正確的是( 。
A.a2<b2B.2a<2bC.a+2<b+2D.-a<-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,若過點(diǎn)F且斜率為B的直線與拋物線相交于M、N兩點(diǎn),且|MN|=8.
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C的切線,且l∥MN,點(diǎn)P為直線l上的任意一點(diǎn),求$\overrightarrow{PM}•\overrightarrow{PN}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案