14.函數(shù)y=|sinx|的周期為π.

分析 根據(jù)函數(shù)y=|Asin(ωx+φ)|的周期為$\frac{1}{2}•\frac{2π}{ω}$,得出結論.

解答 解:∵函數(shù)y=|Asin(ωx+φ)|的周期為$\frac{1}{2}•\frac{2π}{ω}$,
∴函數(shù)y=|sinx|的周期為$\frac{1}{2}•2π$=π,
故答案為:π.

點評 本題主要考查正弦函數(shù)的周期性,利用了函數(shù)y=|Asin(ωx+φ)|的周期為$\frac{1}{2}•\frac{2π}{ω}$,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系xOy中,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=sinθ.
(Ⅰ)求曲線C1的極坐標方程及曲線C2的直角坐標方程;
(Ⅱ)已知曲線C1,C2交于O,A兩點,過O點且垂直于OA的直線與曲線C1,C2交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.給定R上的函數(shù)f(x),( 。
A.存在R上函數(shù)g(x),使得f(g(x))=xB.存在R上函數(shù)g(x),使得g(f(x))=x
C.存在R上函數(shù)g(x),使得f(g(x))=g(x)D.存在R上函數(shù)g(x),使得f(g(x))=g(f(x))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象如圖所示,則f(4)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知命題p:?x∈R,log5x≥0,則(  )
A.¬p:?x∈R,log5x<0B.¬p:?x∈R,log5x≤0C.¬p:?x∈R,log5x≤0D.¬p:?x∈R,log5x<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合M={x|x<1},N={x|x(x-1)<0},則M∪N=( 。
A.B.{x|0<x<1}C.{x|x<0}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為x2+y2=$\frac{4}{5}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于-$\frac{1}{4}$,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=$\frac{1}{2}$AD.
(1)求證:CD⊥平面PAC;
(2)在棱PD上是否存在一點E,使CE∥平面PAB?若存在,指出E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,角A、B、C的對邊分別為a,b,c,角A,B,C成等差數(shù)列.
(Ⅰ)求cosB的值; 
(Ⅱ)邊b2=ac,求sinAsinC的值.

查看答案和解析>>

同步練習冊答案