11.方程y=-$\sqrt{25-{x}^{2}}$表示的曲線( 。
A.一條射線B.一個(gè)圓C.兩條射線D.半個(gè)圓

分析 化簡(jiǎn)整理后為方程x2+y2=25,但還需注意y≤0的隱含條件,判斷即可.

解答 解:化簡(jiǎn)整理后為方程x2+y2=25,但y≤0.
所以曲線的方程表示的是半個(gè)圓.
故選:D.

點(diǎn)評(píng) 本題考查曲線與方程的應(yīng)用,注意方程的隱含條件的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在極坐標(biāo)系中,點(diǎn)$(4,\frac{π}{3})$到直線$ρsin(θ-\frac{π}{3})=2$的距離是( 。
A.2B.3C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(3,5),傾斜角為$\frac{π}{6}$.
(Ⅰ) 寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法:①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大,②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3,③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1$,$\overline y=3$,則a=1,④若變量x和y滿足關(guān)系y=-0.1x+1,且變量y與z正相關(guān),則x與z也正相關(guān),正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.x2+y2=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$,后所得圖形的焦距(  )
A.4B.2$\sqrt{13}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列命題正確的是⑤
①若函數(shù)y=f(x)滿足f(x-1)=f(x+1),則函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
②在線性回歸分析中,相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,且r越接近于1,該組數(shù)據(jù)的線性相關(guān)程度越大;
③在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0是△ABC為鈍角三角形的充要條件;
④命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0<0”;
⑤由樣本數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必過樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知3sin2α+2sin2β=1,3sin2α-2sin2β=0,且α、β都是銳角,則α+2β的值為( 。
A.$\frac{π}{2}$B.πC.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.老王和小王父子倆玩一種類似于古代印度的“梵塔游戲”;有3個(gè)柱子甲、乙、丙,在甲柱上現(xiàn)有4個(gè)盤子,最上面的兩個(gè)盤子大小相同,從第二個(gè)盤子往下大小不等,大的在下,小的在上(如圖),把這4個(gè)盤子從甲柱全部移到乙柱游戲即結(jié)束,在移動(dòng)過程中每次只能移動(dòng)一個(gè)盤子,甲、乙、丙柱都可以利用,且3個(gè)柱子上的盤子始終保持小的盤子不能放在大的盤子之下,設(shè)游戲結(jié)束需要移動(dòng)的最少次數(shù)為n,則n=( 。
A.15B.11C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知四棱錐P-ABCD的三視圖和直觀圖如圖:

(1)求四棱錐P-ABCD的體積;
(2)若E是側(cè)棱PC上的動(dòng)點(diǎn),是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案