7.某工廠經(jīng)過市場(chǎng)調(diào)查,甲產(chǎn)品的日銷售量P(單位:噸)與銷售價(jià)格x(單位:萬元/噸)滿足關(guān)系式P=$\left\{\begin{array}{l}{-ax+17,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$(其中a為常數(shù)),已知銷售價(jià)格為4萬元/噸時(shí),每天可售出該產(chǎn)品9噸.
(1)求a的值;
(2)若該產(chǎn)品的成本價(jià)格為3萬元/噸,當(dāng)銷售價(jià)格為多少時(shí),該產(chǎn)品每天的利潤(rùn)最大?并求出最大值.

分析 (1)由銷售價(jià)格為4萬元/噸時(shí),每日可銷售出該商品9噸,建立方程,即可得到a的值;
(2)商場(chǎng)每日銷售該商品所獲得的利潤(rùn)=每日的銷售量×銷售該商品的單利潤(rùn),可得日銷售量的利潤(rùn)函數(shù)為關(guān)于x的函數(shù),再用二次函數(shù)求得最值,從而得出最大值對(duì)應(yīng)的x值.

解答 解:(1)由題意,x=4,P=9,
由P=$\left\{\begin{array}{l}{-ax+17,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$(其中a為常數(shù)),可得17-4a=9,∴a=2
(2)由(1)可得P=$\left\{\begin{array}{l}{17-2x,3<x≤6}\\{\frac{84}{{x}^{2}}+\frac{7}{x},6<x≤9}\end{array}\right.$
設(shè)商品所獲得的利潤(rùn)為y=(x-3)P=$\left\{\begin{array}{l}{(17-2x)(x-3),3<x6}\\{(\frac{84}{{x}^{2}}+\frac{7}{x})(x-3),6<x≤9}\end{array}\right.$
當(dāng)3<x≤6時(shí),y=(17-2x)(x-3),當(dāng)且僅當(dāng)x=6時(shí),取得最大值15;
當(dāng)6<x≤9時(shí),y=(x-3)($\frac{84}{{x}^{2}}$+$\frac{7}{x}$)=-252$(\frac{1}{x}-\frac{1}{8})^{2}$+$\frac{175}{16}$,
當(dāng)x=8時(shí),取得最大值$\frac{175}{16}$<15.
綜上可得x=6時(shí),取得最大值15,即當(dāng)銷售價(jià)格為6萬元/噸時(shí),該產(chǎn)品每天的利潤(rùn)最大且為15萬元.

點(diǎn)評(píng) 本題考查分段函數(shù)的解析式的求法,考查函數(shù)的最值的求法,注意運(yùn)用基本不等式和配方結(jié)合二次函數(shù)的最值求得,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f:A→B為從集合A到集合B的一個(gè)映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y),若A中元素(1,a)的象是(b,4),則實(shí)數(shù)a,b的值分別為( 。
A.-2,3B.-2,-3C.-3,-2D.1,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上單調(diào),且f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),則f(x)的最小正周期為  ( 。
A.$\frac{π}{2}$B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若在△F1PF2中,∠F1PF2=60°,則橢圓的離心率是(  )
A.$\frac{\sqrt{3}}{3}$B.2-$\sqrt{2}$C.2-$\sqrt{3}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的偶函數(shù),若對(duì)任意x∈R,都有f(4+x)=f(-x),且當(dāng)x∈[0,2]時(shí),f(x)=2x-1,則下列結(jié)論不正確的是( 。
A.函數(shù)f(x)的最小正周期為4B.f(1)<f(3)
C.f(2016)=0D.函數(shù)f(x)在區(qū)間[-6,-4]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對(duì)應(yīng)關(guān)系如表:
x123
f(x)231
x123
g(x)321
則方程g(f(x))=x的解集為{3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩艘輪船都要在某個(gè)泊位?4小時(shí),假定它們?cè)谝粫円沟臅r(shí)間中隨機(jī)地到達(dá),試求這艘船中至少有一艘在?坎次粫r(shí)必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=
60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:AE⊥平面PAD;
(2)取AB=2,在線段PD上是否存在點(diǎn)H,使得EH與平面PAD所成最大角的正切值為$\frac{{\sqrt{6}}}{2}$,若存在,請(qǐng)求出H點(diǎn)的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,已知2asinA+csinC=bsinB,則∠B為( 。
A.鈍角B.銳角C.直角D.不能

查看答案和解析>>

同步練習(xí)冊(cè)答案