13.若焦點(diǎn)在y軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1的離心率為$\frac{2}{3}$,則m的值為(  )
A.$\frac{8}{3}$B.$\frac{2}{3}$C.$\frac{10}{9}$D.以上答案均不對

分析 根據(jù)題意,由橢圓的標(biāo)準(zhǔn)方程分析可得a2=2,b2=m,由橢圓的幾何性質(zhì)計算可得c的值,進(jìn)而由離心率公式可得有e=$\frac{c}{a}$=$\frac{\sqrt{2-m}}{\sqrt{2}}$=$\frac{2}{3}$,計算可得m的值,即可得答案.

解答 解:由題意,橢圓的方程為$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1,其焦點(diǎn)在y軸上,
其中a2=2,b2=m,則c2=2-m,
又由其離心率為$\frac{2}{3}$,則有e=$\frac{c}{a}$=$\frac{\sqrt{2-m}}{\sqrt{2}}$=$\frac{2}{3}$,
解可得m=$\frac{10}{9}$;
故選:C.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),注意橢圓的焦點(diǎn)在y軸上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),P是雙曲線C右支上一點(diǎn),且|PF2|=|F1F2|.若直線PF1與圓x2+y2=a2相切,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=2{sin^2}(x+\frac{π}{4})-\sqrt{3}cos2x,x∈[\frac{π}{4},\frac{π}{2}]$
(1)求f(x)的值域;
(2)若函數(shù)y=f(x)-a又兩個零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線OB弧上求一點(diǎn)M,使得過M所作的y=x2的切線PQ與OA,AB圍城的三角形PQA的面積最大,并求得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=1$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,那么$|2\overrightarrow a-\overrightarrow b|$=( 。
A.2B.3C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某城市100戶居民的月平均用水量(單位:噸),按[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3),[3,3.5),[3.5,4),[4,4.5)分組的頻率分布直方圖如圖.
(1)求月平均用水量的眾數(shù)和中位數(shù);
(2)在月平均用水量為[1.5,2),[2,2.5),[2.5,3)的三組用戶中,用分層抽樣的方法抽取12戶居民參加用水價格聽證會,則月平均用水量在[2,2.5)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若銳角α,β滿足cos2α+cos2β=1,則$cos\frac{α+β}{2}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a>0,若${({{x^2}+\frac{a}{{\sqrt{x}}}})^5}$展開式中的常數(shù)項為80,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=3x2+2x-a在區(qū)間(-1,1)上有唯一零點(diǎn),則實(shí)數(shù)a的取值范圍是1<a<5或$a=-\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案