18.設(shè)定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(m)+f(m-1)<0,求實(shí)數(shù)m的取值范圍.

分析 根據(jù)函數(shù)為定義在[-2,2]上的奇函數(shù),將已知不等式移項(xiàng)整理可得f(1-m)>f(m).再由f(x)在區(qū)間[0,2]上的單調(diào)性得到在[-2,2]上是減函數(shù),由此建立關(guān)于m的不等式組并解之,即可得到實(shí)數(shù)m的取值范圍.

解答 解:由f(m)+f(m-1)<0,移項(xiàng)得f(m)<-f(m-1),
∵f(x)是定義在[-2,2]上的奇函數(shù)
∴-f(m-1)=f(1-m),不等式化成f(1-m)>f(m).?(4分)
又∵f(x)在[0,2]上為減函數(shù),且f(x)在[-2,2]上為奇函數(shù),
∴f(x)在[-2,2]上為減函數(shù).(6分)
因此,$\left\{\begin{array}{l}{1-m<m}\\{-2≤1-m≤2}\\{-2≤m≤2}\end{array}\right.$,解之得$({\frac{1}{2},2}]$.
綜上所述,可得m的取值范圍為$({\frac{1}{2},2}]$.

點(diǎn)評(píng) 本題給出抽象函數(shù)的單調(diào)性和奇偶性,求解關(guān)于m的不等式,著重考查了函數(shù)的單調(diào)性、奇偶性和抽象函數(shù)的理解等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式$\frac{x+1}{x+2}$≥0的解集為(  )
A.{x|x≥-1或x≤-2}B.{x|-2≤x≤-1}C.{x|1≤x≤2}D.{x|x≥-1或x<-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在數(shù)列{an}中,a1=$\frac{1}{2}$,對(duì)任意的n∈N*,都有an+1an=an-an+1成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{$\frac{{a}_{n}}{n}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.Rt△ABC的三個(gè)頂點(diǎn)在半徑為13的球面上,兩直角邊的長(zhǎng)分別為6和8,則球心到平面ABC的距離是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等比數(shù)列{an}中,a1=1,a4=8,則公比q等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)令ω=1,判斷函數(shù)$F(x)=f(x)+f(x-\frac{π}{2})$的奇偶性并說(shuō)明理由;
(2)已知在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=$\sqrt{3}$,b=2,sin B=$\frac{\sqrt{6}}{3}$,求F(x)+4cos(2A+$\frac{π}{6}$),(x∈[0,$\frac{11π}{12}$])的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)$f(x)=\frac{{2{{(x-1)}^2}}}{x},g(x)=ax+5-2a(a>0)$,若對(duì)于任意x1∈[1,2],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是( 。
A.[4,+∞)B.(0,$\frac{5}{2}$)C.[$\frac{5}{2}$,4]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-2x+2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解下列關(guān)于x的不等式:
(1)-x2+2x-$\frac{2}{3}$>0;
(2)x2+(1-a)x-a<0,a∈R.

查看答案和解析>>

同步練習(xí)冊(cè)答案